
MIL-Lite
version 7

User Guide and Command Reference

Manual no. 10514-801-0710

March 1, 2002

Matrox® is a registered trademark of Matrox Electronic Systems Ltd.

Microsoft®, Windows®, and Windows NT® are registered trademarks of
Microsoft Corporation.

PC/104-Plus™ is a trademark of the PC/104 Consortium.

CompactPCI™ is a trademark of PCI Industrial Computer
Manufacturers’ Group.

Intel®, Pentium®, and Pentium II® are registered trademarks of Intel
Corporation.

Texas Instruments™ is a trademark of Texas Instruments Incorporated.

All other nationally and internationally recognized trademarks and
tradenames are hereby acknowledged.

© Copyright Matrox Electronic Systems Ltd., 2002. All rights reserved.

All rights reserved. Limitation of Liabilities: In no event will Matrox or its
suppliers be liable for any indirect, special, incidental, economic, cover
or consequential damages arising out of the use of or inability to use the
product, user documentation or related technical support, including
without limitation, damages or costs relating to the loss of profits,
business, goodwill, even if advised of the possibility of such damages. In
no event will Matrox and its suppliers’ liability exceed the amount paid
by you, for the product.

Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation
may not apply to you.

Disclaimer: Matrox Electronic Systems Ltd. reserves the right to make
changes in specifications at any time and without notice. The
information provided by this document is believed to be accurate and
reliable. However, neither Matrox Electronic Systems Ltd. nor its suppliers
assume any responsibility for its use; or for any infringements of patents
or other rights of third parties resulting from its use. No license is granted
under any patents or patent right of Matrox Electronic Systems Ltd.

PRINTED IN CANADA

 Contents
Chapter 1: Getting started . 13

The MIL-Lite package 14

MIL and the Intel MMX/SSE technologies16

System requirements 17

Getting started .18

Installation .19

Building an application21

Chapter 2: Allocating an image buffer and grabbing
images . 27

Getting started .28

Allocating and displaying an image buffer29

Grabbing images. .32

Chapter 3: Specifying and managing your data
buffers . 35

Data buffers .36

Target system .37

Specifying the dimensions of a data buffer . . .37

Data type and depth .38

Attribute .38

Manipulating and controlling certain data
buffer areas .42

Child buffers .42

Copying specific buffer areas 43

Managing data buffers 44

Controlling how color image buffers are
stored .46

RGB buffers . 47

Binary buffers . 49

YUV buffers . 49

YUV16 Packed . 50

YUV9 Planar . 51

YUV12 Planar . 51

YUV16 Planar . 52

YUV24 Planar . 53

Child YUV buffers 53

Accessing a MIL buffer directly 54

Mapping a data buffer to user-allocated
memory . 55

Pixel conventions . 58

Using buffers with the Bayer color filter 59

Using MIL to convert the image 60

How the Bayer image gets converted 62

White balancing your Bayer images 64

Chapter 4: Lookup tables . 67

Lookup tables . 68

LUTs and data buffers 69

Loading and generating data into LUTs 69

Generating data directly into the LUT
buffer . 69

Loading LUTs with precalculated data 70

Using LUTs . 71

Displaying using LUTs 71

LUTs and digitizers 72

Chapter 5: Displaying an image 73

Displaying an image .74

Types of displays. .75

Windowed display .75

Auxiliary display .76

Display number .79

Display size and depth79

Displaying buffers of different data
depths .80

Removing a buffer from the display81

Displaying multiple buffers82

Panning, scrolling, and zooming 85

Annotating the displayed image
non-destructively .86

Using GDI annotations88

Displaying an image in a user-defined
window .90

Using MdispSelectWindow() 90

Palettes and output LUTs for windowed
display (256-color). .94

Reference material: Windows palettes
and physical output LUTs.94

Default palette settings96

Changing the default LUT values 97

CPU-assisted display.100

Chapter 6: Generating graphics 101

MIL and graphics . 102

Preparing for graphics 102

Drawing graphics . 104

Writing text . 106

Chapter 7: Grabbing with your digitizer 107

Cameras and input devices 108

The data format . 109

The digitizer number 110

Multiple cameras . 110

Grabbing a single field 111

Line-scan cameras . 111

Grabbing to the display 112

Live and pseudo-live continuous grabs. . . 112

Live transfer to the display. 113

Pseudo-live transfers to the display 113

Screen Tearing . 116

Reference levels, lookup tables, and scaling . 117

Black and white reference levels 117

Color image reference levels 119

Mapping grabbed data through a LUT . . . 119

Scaling . 119

Optimizing application performance when
grabbing . 121

Grab mode . 121

Double buffering 122

Multiple buffering 124

Grabbing a sequence of frames in
real-time. .125

Grabbing with triggers and exposures125

Asynchronous reset mode126

Triggers and exposures127

Software triggers.130

Chapter 8: Color .131

Dealing with color .132

Grabbing. .132

Displaying. .134

Saving and loading color images135

How to manage your color buffer135

Chapter 9: JPEG compression 139

Introduction .140

General steps .141

Controlling a JPEG compression143

JPEG lossless .143

JPEG lossy .144

Restart markers .145

Improving results .146

Working with tables.147

Inquiring values in default tables 147

Using your own table 148

Chapter 10: Data manipulation with multiple
systems . 149

Data manipulation with multiple systems. . . 150

Chapter 11: Using MIL with multi-processing and
under multi-thread systems . 151

Multi-processing . 152

Multi-threading . 153

MIL and multi-threading 154

Chapter 12: Using MIL with Native Mode Functions . 163

Integrating native functions with MIL code . . 164

Portability . 164

Signaling MIL about Native Mode use. . . . 164

A native mode example. 165

Chapter 13: Distribution . 169

Distribution of MIL-Lite-based applications . 170

Redistributing MIL-Lite run-time DLL files
and device drivers with your application. . . . 170

Redistributing directly from the
MIL-Lite CD . 170

Redistributing using your own setup
program. 171

Normal redistribution using your
custom CD. 171

Silent redistribution 172

Response file parameters 173

Debugging the response file 175

Important notes for Windows 98/Me
users .176

Important notes for Windows NT/2000
users .176

Uninstallation .177

MIL and MIL-Lite licenses178

Chapter 14 : Programming with MIL181

A MIL overview .182

Starting your MIL application183

Header file and libraries184

MIL object manipulation concepts.184

Error handling and reporting 185

Tracing an application 186

A quick command reference 187

The application allocation and control
module .187

The buffer allocation and access module. .188

The digitizer allocation and control
module .190

The display allocation and control
module .191

The basic data generation module.192

The basic graphics module192

The system allocation and inquiry module 193

Chapter 15: The command reference descriptions. .195

The reference description notes196

Appendix A: The default setup configuration file . . . 409

The default setup configuration file 410

When you do not want to use defaults 413

 Appendix B: The MIL Function Developer’s
Toolkit . 415

The MIL Function Developer’s Toolkit 416

An example using the Function Developer’s
Toolkit . 416

MIL Function Developer’s Toolkit
Command Reference 419

Index

Product Support

To gain portable keys to...

image acquisition

image display

MIL-Lite

Part I:

Using

Chapter 1: Getting started

This chapter presents the MIL-Lite package features. It also
explains the installation process and how to run a MIL-Lite
application program.

14 Chapter 1: Getting started

The MIL-Lite package

MIL-Lite is a subset of MIL, the Matrox Imaging Library
package. It includes all the MIL features for acquisition, data
manipulation, graphics, and display control. Since all MIL-Lite
features are identical to those in MIL, we use the word "MIL"
to represent "MIL-Lite" throughout this manual.

The MIL package is a hardware-independent modular 32-bit
imaging library. In general, MIL can manipulate either binary,
grayscale, or color images.

The package has been designed for fast application
development and ease of use. It has a completely transparent
management system and entails virtual, rather than physical,
data object manipulation, allowing for platform-independent
applications. This means that a MIL application can run on any
VESA-compatible VGA board or Matrox imaging board under
different environments (that is, Windows 98/Me/NT/2000). MIL
uses the notion of systems to identify boards, and more than
one board can be controlled by a single application program.
MIL is capable of running solely with the Host CPU, but can
take advantage of specialized accelerated Matrox hardware if
it is available and is more efficient.

Image acquisition Images can be loaded from disk or acquired from the wide range
of supported input devices (if hardware permits) and can be
stored in your platform’s storage area. Sequences of images can
also be loaded and saved in .avi format. A Bayer filter is also
included in MIL, which allows you to grab images with cameras
using Bayer filters, and then convert them into 3-band color or
single-band monochrome images.

Graphics capabilities You can annotate or alter images using the basic graphics tools
in MIL. MIL has commands to write text, as well as commands
to draw rectangles, arcs, lines, and dots.

The MIL-Lite package 15

Creating your own MIL
functions

If the available MIL operations do not provide the required
functionality or do not make use of some board-specific feature,
you can use the MIL Developer’s Toolkit to directly access your
target system’s driver functions through native mode and/or to
create your own pseudo-MIL functions. Note, although entering
native mode can be useful, you should be aware that the
resulting application will not be portable to other Matrox
platforms supported by the MIL package. The MIL Developer's
Toolkit is described in the Appendices of this manual.

MIL objects MIL handles physical objects (systems, digitizers, displays, and
data buffers) as virtual objects. These virtual objects must be
allocated before you can manipulate them and must be released
when they are no longer required. For simple applications, you
seldom need to allocate these objects individually, since those
set up by default (MappAllocDefault()) generally meet your
application needs.

Image pixel depth The MIL package can:

■ Grab up to 16-bit grayscale images, or color images

■ Display 1, 8, or 16-bit grayscale or color images (if the
platform supports it).

MIL documentation’s
word usage

All the MIL documentation uses the words function and
command interchangeably, since most of the commands in MIL
are C functions. Digitizer and frame grabber are also used
interchangeably. Finally, in general, Host refers to the principal
CPU in one’s computer while system refers to your Matrox
imaging board and its associated resources.

Command descriptions Descriptions of the individual commands are found in the
Command Reference part of this manual.

16 Chapter 1: Getting started

MIL and the Intel MMX/SSE technologies

MIL has been optimized, in assembly language, to take
advantage of Intel MMX acceleration and Streaming SIMD
Extensions (SSE).

MMX Intel MMX Technology, an extension to the Intel architecture,
is designed specifically to accelerate multimedia (and
multimedia-like) applications. Intel MMX Technology is built
to handle computation-intensive algorithms that perform
repetitive operations on small data types (such as 8-bit pixels).
The technology covers several areas, such as basic arithmetic
operations, logical operations, shift operations, comparison
operations, and data transfer instructions. These instructions
use a SIMD model that allows the processor to perform a single
calculation simultaneously on 2, 4, or 8 data elements by
packing multiple operands (8-bit, 16-bit, or 32-bit values) into
a single 64-bit register and performing processing functions on
them in parallel. On a x86 compatible processor with Intel
MMX Technology, MIL operations can execute, typically, 4
times faster than on a regular x86 processor. Some operations
benefit even more from the MMX acceleration.

SSE Streaming SIMD extensions accelerate performance of floating
point operations and include additional integer and
cacheability instructions that significantly enhance
performance.

System requirements 17

System requirements

The library MIL is available as a set of DLLs under Windows
NT/98/2000/Me.

The following system requirements should be respected to
ensure that MIL operates properly:

■ Computer with Pentium class x86 compatible processor or
better.

■ Windows 98, Windows Me, Windows NT 4.0, or Windows
2000.

■ Minimum of 48 Mbytes RAM for Windows 98/Me/NT, 64
Mbytes RAM for Windows 2000. This does not include DMA
or non-paged memory space needed for any of the systems.

■ Minimum of 100 Mbytes free hard disk space for a
development environment in MIL. Minimum of 25 Mbytes of
free hard disk space for a run-time environment in MIL.

■ Matrox Imaging frame grabber with a MIL driver for
Microsoft Windows 98/Me/NT/2000 (optional).

■ graphics controller can be on a Matrox Imaging frame
grabber.

Supported compilers

The MIL CD includes MIL libraries that support the Microsoft
Visual C++ 6.0 (service pack 5) compiler under Windows NT 4.0
(service pack 6), Windows 98 SE, Windows Me, and Windows
2000. The CD also includes ActiveMIL ActiveX controls for
Microsoft Visual Basic 6.0 (service pack 5) and Microsoft Visual
C++ 6.0 (service pack 5) RAD tools. The service pack indicated
in parentheses denotes the actual platform used for testing.

18 Chapter 1: Getting started

Getting started

Getting started You are probably anxious to start using MIL. However, before
you start, we recommend that you follow these steps:

■ Fill out and mail in your registration card. This ensures that
you are on our mailing list and will receive any information
on product updates and promotions.

■ Install MIL on your hard disk using the installation details
in the next section. Upon completion, the readme.txt file, in
the \MIL\DOC (or user-specified) directory, specifies the
location of all MIL files and how to compile the MIL program
examples. See the \MIL\DOC directory for additional
documentation.

■ Compile and run our sample program mstart.exe, in the
examples directory, to test the installation.

■ Review the milsetup.h file to make sure that the default setup
configuration matches your system configuration.

Note, the defaults are not automatically loaded into your
system; a call to MappAllocDefault() initializes the system
with these defaults. For simplicity, most examples use the
default system and default display buffer. Upon installation,
the default image buffer is monochrome if the input device is
monochrome and color if the input device is color. Most
examples expect the default image buffer to be monochrome.
As you progress in the manual, you are shown how to set up
your own buffers and select other system configurations. You
can then return to a given example and replace portions of
the code to meet your requirements.

Installation 19

Installation

To install your MIL software, place the installation CD in an
appropriate drive. The setup.exe program will run
automatically.

During installation, you will be asked a number of questions,
such as:

■ The drive and directory on which to install the program.

■ Your development tool.

■ The type of Matrox hardware installed in your computer (for
example, Matrox Corona-II). Note that under Windows
98/Me/2000 the boards have to be installed before the Matrox
frame grabber drivers are installed.

■ Whether to install the MGA drivers. This will only be asked
if you have a Matrox Imaging board with a display section or
a Matrox graphics board, and the drivers to be installed are
newer than the drivers already on your computer.

■ The digitizer and display format to load into the default setup
file, milsetup.h.

■ Whether by default, displayed images should be displayed in
a window on the Windows desktop or without a window on
an auxiliary screen (a non-Windows desktop screen). If the
answer is the latter, you will be asked for the video
configuration format (VCF) to use by default. Auxiliary
screens require either two graphics controllers or a
DualHead graphics controller that integrates two CRT
controllers.

■ The amount of DMA linear non-paged memory to reserve for
grab buffers. The amount of reserved DMA memory also
establishes the amount of remaining RAM available to your
operating system.

It is important to remember that only one copy of MIL-Lite can
be present on a computer at a time. When installing MIL-Lite
on a computer with a more recent or equally recent version of
MIL or MIL-Lite, the application’s set-up program will not
install MIL-Lite.

20 Chapter 1: Getting started

Conversely, if the version of MIL or MIL-Lite on the computer
is less recent than the application’s required version, a decision
must be made. Either the version of MIL or MIL-Lite already
on the computer must be removed before installing the newer
version, otherwise the current version cannot be installed on
that computer.

 After installation, read the readme.txt file in the \MIL\DOC
directory to determine where MIL files are located and how to
compile and run the MIL examples. Note that the installation
program also installs Matrox Intellicam (your digitizer
configuration program) and the MIL Configuration utility.

MIL Configuration utility The MIL Configuration utility, located in your MATROX
IMAGING\MILCONFIG directory, provides licensing, DMA
configuration, and system information tools. For example, if
you need to change the amount of reserved memory or if you
change the amount of physical memory in your computer, you
can change the amount of DMA memory assigned or RAM
available to your system at any time by running the MIL
Configuration utility (alternatively, you can adjust the memory
by uninstalling and reinstalling MIL). Should you require
technical support, use the MIL Configuration’s System Info
property page to generate a .txt file that contains all the
necessary system information required for basic
troubleshooting; this file can then be forwarded to your Matrox
technical support representative.

If MIL is run without the hardware license-key, a temporary
evaluation license is assigned to your computer, allowing use
of MIL for 30 days. Each time you run MIL, a dialog box appears
indicating the number of days until the evaluation license
expires. Once this time period has elapsed, MIL will not run
unless you purchase a license.

Note that MIL's 30-day evaluation license can only be installed
once. Any attempt to tamper with the PC's calendar, before the
date of expiry, will disable MIL. In that event, MIL can only be
re-used once a license is obtained.

Building an application 21

Building an application

Initialization At the beginning of each application, you must:

1. Allocate your MIL application. This creates a control and
execution environment for your imaging application.

2. Allocate your systems. This opens communication channels
and initializes the systems (or hardware resources). Once
Host communication has been established with a system,
you can allocate its memory resources, display, and input
capabilities.

Note, systems can have many data buffers, displays and
digitizers.

If the required system is the one specified in the milsetup.h file,
you can use the MappAllocDefault() macro (also specified in
milsetup.h) to allocate the default application, system, image
buffer, display, and digitizer. Use MappFreeDefault() to free the
application, devices, and memory resources that were allocated
with MappAllocDefault(), when they are no longer required.

22 Chapter 1: Getting started

Alternatively, you can use MappAlloc(), MsysAlloc(),
MbufAllocColor(), MdispAlloc(), and MdigAlloc() to perform the
above-mentioned operations, respectively. In this case, when
allocated memory resources, displays, and digitizers are no
longer required, free them using MbufFree(), MdispFree(), and
MdigFree(), respectively. At the end of each application, free the
system using MsysFree(), then free the application using
MappFree().

❖ Note, for information about functionality and hardware
limitations specific to your target system, refer to the
MIL/MIL-Lite Board-specific notes manual.

Multiple systems Note, you can allocate more than one system and then use their
identifiers to access their devices and memory resources. Any
operation involving more than one system will be performed by
the most appropriate one. By default, if none of these systems
is more appropriate than the Host, then the Host is used to
perform the operation.

The default image
buffer

If a color digitizer configuration format (DCF) was specified
upon installation, the default image buffer is defined as a color
buffer (RGB) in the milsetup.h file. Note, most examples in this
manual assume that the default image buffer is a monochrome
buffer. You will have to modify the examples appropriately in
order to run them with color defaults. For more details on
dealing with color, see Chapter 8.

When allocating the default buffer and the default display, the
image buffer is given a displayable attribute and set to the same
size as the allocated display (in single-screen mode, the default
display is the same as that of the image capture-size specified
in the DCF). This buffer is then cleared and displayed.

Error reporting You can enable or disable error reporting to the Host screen,
using MappControl(). By default, error reporting is enabled. If
you disable error reporting, you can still determine the success
of a particular command or a sequence of commands, using
MappGetError(). In addition, you can assign a user-defined
function to handle the event of a MIL error using
MappHookFunction().

Building an application 23

Compiling and linking To compile a MIL application program, you must include the
mil.h header file, in addition to the required standard C include
files. After you have compiled your application program, you
will have to link it with the appropriate libraries or import
libraries for your operating system, compiler, and target board.
The MIL libraries are located in the MATROX IMAGING (OR
USER-SPECIFIED)\MIL\LIBRARY\WINNT\MSC\DLL directory.

For more details, refer to the readme.txt file in the \MIL\Doc
(or user-specified) directory.

Testing installation We have provided a sample program, mstart.c, that allows you
to test the installation process and become familiar with
running a MIL application. This test program allocates the

MIL Libraries

Library Description

mil.lib Core library

milvga.lib VGA library.

Board Libraries

Library Description

mil1394.lib Matrox Meteor-II/1394
library.

milgen.lib Matrox Genesis library.

milmet2.lib Matrox Meteor-II/Stan-
dard/Multi-Channel library.

milmet2cl.lib Matrox Meteor-II/Camera
Link library.

milmet2D.lib Matrox Meteor-II/Digital
library

milorion.lib Matrox Orion library.

milcor2.lib Matrox Corona-II library.

24 Chapter 1: Getting started

application, opens communication with the default target
system, displays a welcoming message, pauses, and frees the
system resources.

Communicating
properly?

During application development, you can use mstart.c to ensure
that the software is communicating properly with the target
system. To make sure your frame grabber is working properly
with your camera, use Matrox Intellicam.

Examples in general Throughout this manual, examples have been provided to
simplify concepts and get you started quickly. The source listing
of these examples can be found on disk. Refer to the readme file
in the \MIL\DOC (or user-specified) directory to determine how
to compile these examples.

���(KNG�PCOG��OUVCTV��E
���5[PQRUKU���6JKU�RTQITCO�FKURNC[U�C�YGNEQOKPI�OGUUCIG�VQ�VJG�WUGT�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

XQKF�OCKP
XQKF�
]
��/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����

����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
�������������������/A07..���/KN+OCIG��

����2TKPV�C�UVTKPI�KP�VJG�KOCIG�DWHHGT����
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.��������������������������
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.����9GNEQOG�VQ�/+.��������
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.��������������������������

����2TKPV�C�OGUUCIG�QP�VJG�*QUV�UETGGP����
��RTKPVH
�>P���
��RTKPVH
�>�9GNEQOG�VQ�/+.����>��YCU�RTKPVGF�>P>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

����(TGG�FGHCWNVU����
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

Building an application 25

In addition, some systems cannot run some of the examples
because they don’t have the hardware capability or enough
memory. You should skip these examples or modify them.

26 Chapter 1: Getting started

Chapter 2: Allocating an
image buffer and grabbing
images

This chapter shows you how to allocate an image buffer
and the basics to start grabbing images.

28 Chapter 2: Allocating an image buffer and grabbing images

Getting started

After having run the mstart.c program to ensure that you have
installed MIL properly, you are ready to grab and display an
image. This chapter covers how to allocate and display a
monochrome image buffer and the basics to start grabbing.

Note, most of our examples that grab data assume that the
system has a monochrome digitizer. They also assume that the
input device (camera) is monochrome and is connected to the
default input channel of this digitizer (defaults are defined in
the milsetup.h file).

In addition, the examples assume that the default image buffer
is monochrome.

If you have specified a color digitizer input format upon
installation, the default digitizer and image buffer will be set
to color accordingly (a color image buffer is an image buffer with
multiple color bands rather than a monochrome buffer), and
therefore will not be appropriate for most examples. To run the
examples using the color defaults, you will have to modify some
examples appropriately.

Later in this manual, we discuss changing the current input
channel, how to specify a different digitizer format, and how to
allocate different types of image buffer. With that knowledge,
you can return to this chapter and modify the examples.
Chapter 8 discusses dealing with color in detail.

Allocating and displaying an image buffer 29

Allocating and displaying an image buffer

Allocating an image
buffer

Image buffers are storage areas that can hold image data so
that it can be displayed, manipulated, grabbed, and/or
analyzed. For simple operations, you will find it sufficient to
use the default image buffer that can be allocated during
application initialization with the MappAllocDefault() macro.
However, for some operations, you will need to allocate another
buffer. For example, if you require that the image data
resulting from an operation does not overwrite the source data,
you will need two separate image buffers.

You allocate a monochrome image buffer, using MbufAlloc2d().
This command requires that you specify:

■ The system on which to allocate the buffer.

■ The image buffer’s size in x and y dimensions.

■ The depth of the buffer: 1-, 8-, 16-, or 32-bit buffers.

■ The image buffer’s data type. Signed, unsigned, and
floating-point buffers are all supported by MIL.

■ The image buffer’s intended use. You can allocate an image
buffer to have a combination of uses. It can be used as the
source or destination buffer for a processing operation
(M_PROC), a buffer in which to store acquired data (M_GRAB),
and/or a displayable buffer (M_DISP). This type of
information determines where the buffer is allocated in
physical memory.

Displaying an image
buffer

Especially during application development, it is useful to
display the image buffer that you are manipulating. You must
first allocate a MIL display on the target system, using
MdispAlloc() (or MappAllocDefault()). If you have allocated a
displayable buffer (M_DISP), display it in this display, using
MdispSelect() and stop displaying it using MdispDeselect().
Note, however, that the image buffer and the display should be
allocated on the same system.

30 Chapter 2: Allocating an image buffer and grabbing images

The following example shows you how to allocate and display
an image buffer. Upon completion, it leaves the buffer contents
on the display so that you can analyze it. You can modify the
example and remove it from the display upon exit by calling
MdispDeselect() before freeing the image buffer.

���(KNG�PCOG��OFKURNC[�E
���5[PQRUKU��6JKU�RTQITCO�CNNQECVGU�C�FKURNC[CDNG�KOCIG�DWHHGT��ENGCTU�KVU�
�������������EQPVGPVU��FTCYU�C�HKNNGF�EKTENG��CPF�VJGP�FKURNC[U�VJG�DWHHGT�
�������������+V�CNUQ�EJGEMU�YJGVJGT�VJG�CNNQECVKQP�YCU�UWEEGUUHWN��WUKPI
�������������VJG�/+.�GTTQT�TGRQTVKPI�OGEJCPKUO�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J �

�FGHKPG�+/#)'A&'26*���.

XQKF�OCKP
XQKF�
]�
��/+.A+&��/KN#RRNKECVKQP������#RRNKECVKQP�KFGPVKHKGT������
����������/KN5[UVGO�����������5[UVGO�KFGPVKHKGT�����������
����������/KN&KURNC[����������&KURNC[�KFGPVKHKGT����������
����������/KN+OCIG������������+OCIG�DWHHGT�KFGPVKHKGT�����
��NQPI����'TTQT%QFG�����������'TTQT�EQFG�XCNWG������������

����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��/A07..��/A07..��

����#NNQECVG�C�VYQ�FKOGPUKQPCN�KOCIG�DWHHGT�YKVJ�VJG�UCOG�FKOGPUKQPU�CU�VJG
�����FKURNC[CDNG�UETGGP��KP�YJKEJ�VQ�RGTHQTO�ITCRJKE�QRGTCVKQPU��
����
��/DWH#NNQE�F
/KN5[UVGO��/A&'(A+/#)'A5+<'A:A/+0�/A&'(A+/#)'A5+<'A;A/+0��
��������������/A&'(A+/#)'A6;2'��/A+/#)'
/A&+52���/KN+OCIG���

���
EQPV����

Allocating and displaying an image buffer 31

In this example, we also showed how to determine the success
of a buffer allocation. Subsequent examples will not perform
explicit error checking; instead, errors will be returned
automatically to the screen.

Note, if you allocated the default buffer (MappAllocDefault()),
this buffer would be cleared and displayed by default.

Displaying multiple
buffers

With MIL, you can also display multiple buffers. This is
discussed later in the manual, in Chapter 5: Displaying an
image.

�����%JGEM�VJG�GTTQT�UVCVWU�EQFG�UGV�D[�VJG�CNNQECVKQP�EQOOCPF��+H�VJGTG�
�����YCU�PQ�GTTQT��FTCY�CPF�FKURNC[�C�EKTENG��QVJGTYKUG�RTKPV�CP�GTTQT
�����OGUUCIG�CPF�GZKV��
�����
���/CRR)GV'TTQT
/A%744'06���'TTQT%QFG��
���KH�
'TTQT%QFG����/A07..�
���]
���������%NGCT�DWHHGT�CPF�FTCY�C�EKTENG�����
�������/DWH%NGCT
/KN+OCIG���.��
�������/ITC%QNQT
/A&'(#7.6�����.��
�������/ITC#TE(KNN
/A&'(#7.6��/KN+OCIG�����.�����.�����.�����.��������������

���������&KURNC[�VJG�KOCIG�DWHHGT����
�������/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

���������2TKPV�C�OGUUCIG����
�������RTKPVH
�#�EKTENG�YCU�FTCYP�KP�VJG�FKURNC[GF�KOCIG�DWHHGT�>P���
�������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�������IGVEJCT
��

���������4GNGCUG�KOCIG�DWHHGT����
�������/DWH(TGG
/KN+OCIG��
���_
���GNUG
���]
���������2TKPV�CP�GTTQT�OGUUCIG����
�������RTKPVH
�'TTQT��+OCIG�DWHHGT�CNNQECVKQP�HCKNGF�>P���
�������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�������IGVEJCT
��
���_
��
�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

32 Chapter 2: Allocating an image buffer and grabbing images

Grabbing images

Grabbing an image Many applications depend on the ability to grab an image for
later analysis or inspection. With MIL, you use an allocated
digitizer to grab from an input device (typically a video camera).
To allocate your digitizer, use MdigAlloc() or
MappAllocDefault(). This configures the camera interface on
the digitizer so it can accept input from the input device. With
a call to MdigGrab(), you can then grab into a grab image buffer
(M_GRAB).

The following example shows you how to grab an image from
the default camera.

���(KNG�PCOG��OITCD�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�HTQO�VJG�ECOGTC�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
���/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�������
�����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT������������
�����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT�����������
�����������/KN&KIKVK\GT���������&KIKVK\GT�KFGPVKHKGT���������
�����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT������

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[���/KN&KIKVK\GT���/KN+OCIG��

�����)TCD�CP�KOCIG�����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG��

�����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
���RTKPVH
�#P�KOCIG�JCU�DGGP�ITCDDGF�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN&KIKVK\GT��/KN+OCIG��
���������������������������������
_

Grabbing images 33

Allocate the grab image buffer on the same system, and of the
same data format type, as the digitizer. For color input devices,
use color image buffers (see Chapter 8: Color).

By default, when MdigGrab() is issued, it grabs a complete
frame of data. Use MdigControl() to control the number of
frames or fields grabbed by MdigGrab(). To control the digitizer,
see Chapter 7: Grabbing with your digitizer.

Continuous grabbing
and adjusting your
camera

When adjusting and focusing your camera, grabbing a single
frame at a time can be tedious. MIL features a continuous grab
function, MdigGrabContinuous(), that grabs image frames into
the specified buffer until you issue MdigHalt().

This is discussed in greater detail in Chapter 7: Grabbing with
your digitizer. The following example is of adjusting a camera
using a continuous grab.

���(KNG�PCOG��OHQEWU�E�
���5[PQRUKU���6JKU�RTQITCO�CNNQYU�[QW�VQ�CFLWUV�[QWT�ECOGTC�D[�ITCDDKPI
��������������EQPVKPWQWUN[�WPVKN�C�MG[�KU�RTGUUGF�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
���/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT������
�����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�����������
�����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT����������
�����������/KN&KIKVK\GT���������&KIKVK\GT�KFGPVKHKGT��������
�����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�����

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[���/KN&KIKVK\GT���/KN+OCIG��

�����)TCD�EQPVKPWQWUN[����
���/FKI)TCD%QPVKPWQWU
/KN&KIKVK\GT��/KN+OCIG��

���
EQPV����

34 Chapter 2: Allocating an image buffer and grabbing images

�����9JGP�C�MG[�KU�RTGUUGF��JCNV����
���RTKPVH
�%QPVKPWQWU�ITCD�KP�RTQITGUU��#FLWUV�[QWT�ECOGTC�CPF>P���
���RTKPVH
�RTGUU��'PVGT �VQ�UVQR�ITCDDKPI�>P���
���IGVEJCT
��
����
�����5VQR�EQPVKPWQWU�ITCD����
���/FKI*CNV
/KN&KIKVK\GT��

�����2CWUG�VQ�UJQY�VJG�TGUWNV����
���RTKPVH
�>P&KURNC[KPI�VJG�NCUV�ITCDDGF�KOCIG�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN&KIKVK\GT��/KN+OCIG��
_

Chapter 3: Specifying and
managing your data buffers

This chapter discusses data buffers in detail. It shows you
how to allocate and manage data buffers, and how to
restrict an operation to a portion of a data buffer by using
child buffers. It shows you how YUV buffers are stored, how
to create a user-defined buffer, and how MIL defines the
pixel reference position. It shows you how to grab images
with a Bayer camera and restore the color information.

36 Chapter 3: Specifying and managing your data buffers

Data buffers

Data buffers In this manual, the term data buffer is used loosely to refer to
the most general type of data buffer (storage area) that is
allocated by the MIL package and operated on by most MIL
functions. For example, a data buffer can be a buffer for image
data or one for lookup table (LUT) data. Besides data buffers,
there are also other buffers (for example, result buffers), which
are specific to a particular group of functions. These types of
buffers are discussed in the chapters describing their related
functions.

Allocating data buffers All data buffers must be allocated before a function can access
them. You can allocate a monochrome buffer using
MbufAlloc1d(), MbufAlloc2d(), or MbufAllocColor(). You
allocate a color buffer using MbufAllocColor().

When allocating a data buffer, you must specify its:

■ Target system.

■ Dimensions.

■ Data type and depth.

■ Attribute.

Controlling specific
parts

You can manipulate or control specific parts of data buffers by
allocating and using child buffers. A child buffer is a subset of
the parent buffer (a specific area of the parent buffer). Although
any change made to the child buffer data affects the parent
buffer, the buffer is considered a data buffer in its own right;
wherever the parent buffer can be used, you can use the child
buffer instead to affect only a part of the buffer. All results are
returned relative to the child buffer coordinates rather than the
parent buffer.

Target system 37

Target system

A data buffer is allocated on the specified system. If the
M_DEFAULT_HOST system is specified, the default Host system
of the current MIL application will be used. If M_DEFAULT is
specified, MIL will select the most appropriate system on which
to allocate the data buffer (it can be the default Host system or
any currently allocated system).

In addition, any operation involving one or more buffers will be
performed by the most appropriate system that is associated
with one of the buffers. By default, if none of these systems is
more appropriate than the Host, the Host is used to perform
the operation.

Specifying the dimensions of a data buffer

Data buffers can have up to three dimensions: an x, y, and color
band dimension. Most data buffers have an x dimension (for
example, LUT buffers) or an x and y dimension (for example,
monochrome image buffers). The color-band dimension has
been provided to allow you to store data for each color
component used to represent an image; when allocating color
buffers, each band will be of the same data depth and type.

Once you finish using a data buffer, you should release its
memory space, using MbufFree().

Color band 0
Color band 1

Color band 2

RGB
image buffer

38 Chapter 3: Specifying and managing your data buffers

Certain MIL functions support manipulating multi-band image
buffers. See Chapter 8: Color for details on handling color image
buffers.

Data type and depth

Data type and depth The data depth of a buffer indicates the number of bits per band
in the buffer (1, 8, 16, 32). The data type of a buffer indicates
how its data is internally represented (that is, whether the data
is considered signed, unsigned, or floating-point). Supported
combinations are: 1-bit packed binary; 8-, 16-, and 32-bit
integer (signed and unsigned); and 32-bit floating-point. If a
function can only operate on data buffers of certain depths, this
is explicitly stated in the command’s description, otherwise the
function can be used with any combination of data buffers (the
The MIL-Lite User Guide and Command Reference manual).

Packed binary buffers The packed binary data format represents each pixel by a single
bit, in a state of 0 or 1. Therefore, 8 pixels can be packed in a
single byte (known as an 8-bit data unit); that is, in a format
eight times smaller than an 8-bit image.

Integer and
floating-point buffers

In general, the fewer bits per pixel in a buffer, the faster an
operation can be performed on the buffer. Packed binary buffers
are the fastest to process. When you need to use integer buffers,
use 8 bits per pixel when possible, 16 bits if necessary, and 32
bits as a last resort. When you need non-integer values, extra
precision, or a greater dynamic range, you can use
floating-point data buffers.

Attribute

Buffer type and usage The data buffer attribute indicates the buffer type and its
intended usage. MIL uses this information to determine the
most appropriate location in physical memory in which to
allocate the buffer, and how to handle the buffer. A data buffer
can be one of the following types:

■ M_IMAGE (image buffer).

■ M_LUT (lookup table buffer).

Attribute 39

■ M_KERNEL (kernel buffer for convolution functions).

■ M_STRUCT_ELEMENT (structuring element buffer for
morphology functions).

Allocating an image
buffer

When allocating an image buffer (M_IMAGE), you must give
more information about its intended usage. An image buffer
can be any combination of the following:

■ A buffer that can be displayed (M_DISP).

■ A buffer in which data can be grabbed (M_GRAB).

■ A buffer in which data is stored in a compressed format
(M_COMPRESS).

For example, to allocate an image buffer that can be displayed
and used for processing, its attribute should be given as:

 M_IMAGE + M_DISP + M_GRAB

In general, buffers are allocated in Host memory instead of
on-board memory by default. This is because on-board memory
is limited in size and Host memory can be accessed much faster
than on-board memory. However, if the system has an on-board
processor, the buffer is allocated on-board by default. These
defaults can be overridden by using the MbufAlloc...()
M_ON_BOARD and M_OFF_BOARD attributes.

Grab buffers Buffers with an attribute of M_GRAB are allocated in DMA
memory, which is physically contiguous and always present.
This is also known as non-paged memory. An advantage to
non-paged memory is that a bus mastering device can write to
it without the help of the CPU.

If a system does not support grab buffers (for example,
M_HOST_SYSTEM), you could still allocate a buffer on such a
system in physically contiguous and always present memory by
giving it an M_NON_PAGED attribute instead.

Displayable buffers When a displayable buffer is allocated and selected for display
(MbufAlloc...() with M_DISP, and then MdispSelect()), two
buffers are maintained internally: one in Host memory for
processing purposes, the other in a frame buffer (maintained
directly or through a DIB) for display purposes (not necessarily
the same size). When the Host buffer is modified, its associated

40 Chapter 3: Specifying and managing your data buffers

buffer in the frame buffer is automatically updated. When
displaying a buffer, both the buffer and the display should be
allocated on the same system.

When grabbing a single frame into a displayable buffer, MIL
grabs into the Host memory version of the buffer and then
updates the display of the buffer. When grabbing continuously,
the grab is made directly to the frame buffer and then at the
end of the grab, the Host buffer is updated.

Overriding the default
allocation sequence

On boards with a display section, you can override the default
buffer allocation sequence and force allocation only in the frame
buffer using the MbufAlloc...() M_ON_BOARD attribute. In
general, the buffer is allocated in the non-displayable area of
the frame buffer. When the M_DISP attribute is specified for
auxiliary displays, the buffer will be in the displayable area.
You can allocate only one M_DISP+M_ON_BOARD buffer and one
M_OVR+M_ON_BOARD buffer unless stated in the
MIL/MIL-Lite Board Specific Notes manual.

❖ If you need to allocate an on-board image buffer, it is
important to note that, since MIL selects which device will
be used to display your image, you should only allocate this
buffer (MbufAlloc()) after allocating the display to which it
will be selected (MdispAlloc()).

Overriding the default allocation sequence is useful when
allocating a displayable buffer for any auxiliary display. If you
are not using the displayable buffer for processing or are only

Attribute 41

using it as a destination, storing the buffer on-board will avoid
the extra copy operation to the display without the penalty of
slowing down processing.

Even if it is not in the displayed area of the frame buffer, the
image buffer depth and display depth must be the same.

Internal format of the
buffer

It is also possible to force the internal representation of a data
buffer using internal storage format specifiers, such as
M_PACKED or M_PLANAR, which force the data buffer to be in
a packed or planar format, respectively. Refer to
MbufAllocColor() for a complete list of internal format
specifiers.

Insufficient memory If there is insufficient memory of the appropriate type to
allocate a buffer with the specified attributes, the function
generates an error and does not allocate the buffer.

Inappropriate data
buffer usage

If you try to use a data buffer in a situation that is not
appropriate for its allocated attribute, an error message is
generated and the operation is not performed. For example, if
you try to display a buffer without an M_DISP attribute with
MdispSelect(), an error message will be generated.

Host memory

Src
Buf A

Dest
Buf B

BUF B+

Host memory

Src
Buf A

ON-BOARD
Dest
Buf B

42 Chapter 3: Specifying and managing your data buffers

Manipulating and controlling certain data
buffer areas

You can manipulate or control specific parts of a data buffer by
creating a child buffer within it or by copying specific parts of
it to another buffer.

Child buffers

Child buffers are subsets
of parent buffers

A child buffer is a subset (or region of interest) of a given data
buffer (known as the parent buffer). Child buffers occupy a
specific area of the parent buffer. Since this area is part of the
same physical space as the parent buffer, changes made to the
child buffer affect the parent buffer and vice versa.

Allocating child buffers The child buffer is considered a data buffer in its own right.
Like its parent buffer, a child buffer must be allocated so that
it can be associated with an identifier and recognized as an
entity by the MIL package. Allocate a monochrome child buffer
using MbufChild1d() or MbufChild2d(). To allocate a child
buffer consisting of only one of the color bands of a multi-band
image buffer, use MbufChildColor() or MbufChildColor2d().
Note, as a subset of the parent buffer, a child buffer cannot
exceed the bounds of its parent in any dimension. For example,
a color buffer cannot be created from a monochrome parent
buffer.

A child buffer takes on the same attributes and type as the
parent buffer. In general, any operation that can be performed
on the parent buffer can also be performed on the child buffer.

Allocate a child buffer by specifying its size and offset with
respect to each of the parent buffer dimensions. After, when
using the child image buffer, any specified or returned
coordinates are relative to the child’s top-left corner.

As with any MIL data buffer, once you have finished using a
child data buffer, you must delete it, using MbufFree().

Manipulating and controlling certain data buffer areas 43

One major benefit of the child buffer is being able to handle
several buffers simultaneously, in contexts where normally
only one buffer can be handled. For example, for auxiliary
displays, you can only display one buffer at a time. However,
you might want to display the source and destination buffer of
an operation simultaneously. You can get around this situation
by allocating a displayable image buffer as large as the display,
then allocating two child buffers from this buffer. You can then
use one as the source data buffer and one as the destination.
When the parent buffer is selected on the display
(MdispSelect()), both the source and the destination child
buffers can be seen.

Copying specific buffer areas

As an alternative to using a child buffer, you can restrict
operations to specific areas or bits of a buffer (child or parent)
by copying the required portions to another buffer. You can copy
data from any type of data buffer to another using any of the
following functions. For example:

■ Copy an image buffer to another buffer at the specified offset,
using MbufCopyClip(). Data that falls outside of the
destination buffer will be automatically clipped.

■ Copy specific non-sequential areas to another buffer based
on a conditional buffer, using MbufCopyCond(). Source buffer
data is copied to the destination buffer if corresponding data
in the specified conditional buffer satisfies the copy condition.
Other data in the destination buffer is left unaffected.

■ Copy specific non-consecutive bits to another buffer based on
a mask, using MbufCopyMask(). Only destination bits that
correspond to non-zero bits in the mask are modified with
source bits.

■ Copy a single band of a multi-color band buffer to or from a
single-band buffer, using MbufCopyColor() or
MbufCopyColor2d(). This allows you to operate on a single
color band of a buffer.

44 Chapter 3: Specifying and managing your data buffers

If the source buffer depth is greater than that of the destination,
the most significant bits are truncated when the data is copied
into the destination. If the source is signed and the destination
depth is greater than the source, the source data is
sign-extended when it is copied into the destination.

MbufCopy() copies the entire buffer into another buffer, while
the other commands copy only portions of a buffer.

Managing data buffers

Besides the copy functions discussed in the previous section,
MIL provides several other data buffer management functions.
These allow you to transfer data between an array and a buffer,
load data into a buffer (or a sequence of buffers), and save a
buffer (or a sequence of buffers) to disk.

Putting and retrieving
data

You can put data from an array into a data buffer, using
MbufPut(), MbufPut1d(), MbufPut2d(), MbufPutColor(), or
MbufPutColor2d(). MbufPut() puts data in the entire buffer,
while MbufPutColor() or MbufPutColor2d() put data into one
or all color bands of a multi-band buffer. The other two
commands allow you to put data in a selected area of a
monochrome buffer, respectively.

In addition, you can retrieve data from a data buffer and place
it into an array, using MbufGet(), MbufGet1d(), MbufGet2d(),
MbufGetColor(), or MbufGetColor2d(). MbufGet() gets data
from the entire buffer, while MbufGetColor() or
MbufGetColor2d() get data from one or all bands of a
multi-band buffer. The other two commands, like their ‘ put in
buffer’ counterparts, allow you to get data from a selected area
of a monochrome, respectively.

❖ Note that you can also access the contents of a MIL buffer
from an array by using MbufInquire(). Inquire the Host
address of the buffer, and then using a pointer access the
buffer as an array. This is discussed in more detail later.

Managing data buffers 45

Loading a data buffer You can load data, using one of two methods:

■ Load data into an automatically allocated MIL data buffer,
using MbufImport() with M_RESTORE, or using
MbufRestore().

■ Load data into a previously allocated MIL data buffer, using
MbufImport() with M_LOAD or using MbufLoad().

These commands internally handle the opening and closing of
the file. With MbufImport(), you can specify the file’s format.
MbufLoad() and MbufRestore() will read the data in the file to
determine the format, therefore they might take more time to
return a result.

Saving a data buffer You can save a data buffer to disk, using MbufExport() or
MbufSave(). MbufExport() is the most general of these
commands and can save data in any MIL-supported file format.
MbufSave() can only save data in an M_MIL file format.

These functions internally handle opening and closing the file.
If the given file name already exists, the file will be overwritten.

Loading and saving a
sequence of data
buffers

You can import or export a sequence of image buffers to a file
using MbufImportSequence() or MbufExportSequence(),
respectively. The available file formats are: standard AVI DIB
format, MJPEG format, and proprietary AVI MIL format.

46 Chapter 3: Specifying and managing your data buffers

Controlling how color image buffers are
stored

A color image buffer’s internal representation can be either in
a planar or packed format. When allocating the buffer, if its
attribute is also set to M_PLANAR, the pixels are stored in
planes (for example, RRR GGG BBB). When allocating the
buffer, if its attribute is set to M_PACKED, each pixel is stored
as one unit containing all its components (for example, RGB
RGB RGB).

MIL automatically selects the most appropriate format,
according to the specified intended usage attribute. If an image
buffer is allocated in one format, and a general processing
function requiring another format is called, the function will
automatically convert the data to the required format and
re-convert it back to its original format upon completion. To
change a buffer’s default internal storage format, change the
internal storage part of the attribute parameter for
MbufAllocColor(). Note that it might be slower to process
buffers with M_PACKED attributes.

In general, packed formats are mostly used for display
purposes; when selecting a buffer’s attribute as M_DISP, the
default internal representation is usually packed. This
configuration allows for faster transfers to display sections that
handle packed data (for example, VGA). However, if the display
section of your board has dedicated red, green, and blue frame
buffer planes, the buffer is allocated in planar format.

Planar formats are generally preferred for processing. Here,
the buffer stores each pixel as three component planes (for
example, RRR, GGG, BBB). Processing is done on each of the
components separately.

When allocating an image buffer with more than one attribute,
for example, M_DISP and M_PROC, the buffer’s internal
storage requirements for the display will take precedence over
other attributes.

See the MIL/MIL-Lite Board-Specific Notes manual to
determine which formats are supported on your board.

RGB buffers 47

RGB buffers

By default, MIL allocates color image buffers in an RGB color
format. The pixels are internally stored in little-endian order,
that is, they are stored in memory from their least-significant
to the most significant bytes. The definitions of the RGB
formats that are available are shown here. The corresponding
MIL constant is shown in brackets beside the common format
name.

RGB data formats BGR24 packed (M_BGR24+M_PACKED) is a format whereby
each pixel is internally stored as three consecutive bytes in
little-endian order, that is:

BGR32 packed (M_BGR32+M_PACKED) is a format whereby
each pixel is internally stored as four consecutive bytes, in
little-endian order. The most-significant byte is a "don’t care"
byte, as shown below:

Byte 0

Byte 1

Byte 2 R

G

B

Byte 3

Byte 4

Byte 5 R

G

B

.

.

.

.

.

.

R

G

B

x

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

R

G

B

x
.
.
.

.

.

.

48 Chapter 3: Specifying and managing your data buffers

RGB15 packed (M_RGB15+M_PACKED) is a format whereby
each pixel is internally stored as a 16-bit word with a 5-bit blue
value (least significant), a 5-bit green value, a 5-bit red value,
and a "don’t care" bit (most significant), in little-endian order,
as shown below. Note that when accessing an
M_RGB15+M_PACKED buffer as a 3-band 8-bit buffer, the least
significant bits of each band are set to 0.

RGB16 packed (M_RGB16+M_PACKED) is a format whereby
each pixel is internally stored as a 16-bit word with a 5-bit blue
value (least significant), a 6-bit green value, and a 5-bit red
value (most significant), in little-endian order, as shown below.
Note that when accessing an M_RGB16+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits of each band are
set to 0.

RGB planar are formats whereby the color components of all
the pixels are stored contiguously: (RRR...., BBB..., GGG...).

R G Bx

16-bit word

R G Bx

word 0

word 1

.

.

.

.

R G B

16-bit word

R G B

word 0

word 1

.

.

.

.

Binary buffers 49

Binary buffers

Binary buffers have a different internal storage format than
other types of buffers: eight pixels are stored in one byte. The
leftmost pixel of an image is the least significant bit that is
stored in memory.

YUV buffers

YUV is a compressed format in which Y is the grayscale
component (luminance) and U and V are the color components.
MIL supports grabbing, loading, or saving images in a YUV
color format.

Although any general processing operation can be performed
on YUV buffers, allocating them for processing purposes is not
recommended because MIL is configured to process RGB color
data only. However, MIL will automatically convert YUV buffer
data to RGB for all general processing operations (including
conversion for display), and re-convert it to YUV upon
completion.

All YUV formats are supported even on the Host system.
However, only some systems support grabbing into YUV
buffers. See the MIL/MIL-Lite Board-Specific Notes manual to
determine if grabbing into YUV buffers is supported on your
system.

YUV buffers must be allocated as 3-band 8-bit buffers, however,
the actual number of bits per pixel will differ depending on the
YUV format selected.

The supported YUV formats are:

■ YUV16 Packed

■ YUV9 Planar

■ YUV12 Planar

■ YUV16 Planar

50 Chapter 3: Specifying and managing your data buffers

YUV16 Packed
YUV16 Packed or YUV 4:2:2 (M_YUV16+M_PACKED) is an
interleaved data format. Although each pixel has a
corresponding one byte Y (luminance component), each pair of
pixels share the same one byte U (chrominance U) and the same
one byte V (chrominance V). Since a pair (two pixels) is
represented by 4 bytes, each pixel has an average of 16 bits per
pixel.

The YUV16 packed data format has two available formats:
YUYV and UYVY. The only difference between these two YUV
formats is the ordering of data in the buffer. Certain digitizer
boards grab data in exclusively YUYV or UYVY packed data
format. Note that, for display, certain operations are optimized
to handle the YUYV format; for example, displaying a
decompressed buffer.

When you allocate an M_YUV16+M_PACKED buffer, MIL
allocates the buffer in the format that is most suitable for the
selected platform and the specified buffer attributes. You can,
however, force a format using the M_YUV16_YUYV or
M_YUV16_UYVY control types. When the buffer has an
M_GRAB attribute, forcing an inappropriate format generates
an error. When the buffer has an M_DISP attribute, if you force
the buffer in the other YUV format, then CPU intervention is
required to perform the automatic conversion. See the
MIL/MIL-Lite Board Specific Notes for supported data
formats.

YUYV

YUV buffers 51

UYVY

YUV9 Planar
YUV9 Planar (M_YUV9+M_PLANAR) is a planar format whose
components have a depth of one byte but are not of the same
size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 16 pixels share the same
one byte of U (chrominance U) and the same one byte of V
(chrominance V). Since the 16 pixels are represented by
18 bytes, each pixel has an average 9 bits. For example, a block
of 16 pixels has the following: 16 bytes Y and 1 byte each of U
and V.

YUV12 Planar

YUV12 Planar (M_YUV12+M_PLANAR) is a planar format
whose components have a depth of one byte but are not of the
same size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 4 pixels share the same
one byte of U (chrominance U) and the same one byte of V

Y Y Y Y Y Y Y Y7 6 5 4 3 2 1 0

U U U U U U U U7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y Y7 6 5 4 3 2 1 0

V V V V V V V V7 6 5 4 3 2 1 0

Byte 0

Byte 1

Byte 2

Byte 3

Y plane U plane V plane

4 x 4 bytes

1
byte

1
byte

52 Chapter 3: Specifying and managing your data buffers

(chrominance V). Since the 16 pixels are represented by
24 bytes, each pixel has an average of 12 bits. For example, a
block of 16 pixels has the following: 16 bytes Y and 4 bytes each
of U and V.

YUV16 Planar

YUV16 Planar (M_YUV16+M_PLANAR) is a planar format
whose components have a depth of one byte but are not of the
same size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 2 pixels share the same
1 byte of U (chrominance U) and the same 1 byte of V
(chrominance V). Since the 16 pixels are represented by
32 bytes, each pixel has an average 16 bits. For example, a block
of 16 pixels has the following: 16 bytes Y and 8 bytes each of U
and V.

Y plane U plane

4 x 4 bytes

2 x 2
bytes

V plane

2 x 2
bytes

Y plane U plane V plane

4 x 4 bytes 2 x 4
bytes

2 x 4
bytes

YUV buffers 53

YUV24 Planar
YUV24 Planar (M_YUV24+M_PLANAR) is an uncompressed
planar format whose components have a depth of one byte and
are of equal size. Each pixel has a corresponding 1 byte Y
(luminance) component, 1 byte U component (chrominance U),
and 1 byte V component (chrominance V). Since the 16 pixels
are represented by 48 bytes, each pixel has an average 24 bits.
For example, a block of 16 pixels has the following: 16 bytes Y
and 16 bytes each of U and V.

Child YUV buffers

You can create child buffers from YUV buffers in the same way
as RGB child buffers. When creating YUV child buffers, MIL
will keep the proportions of the U and V bands with respect to
the Y band. For example, if your YUV9 Planar Y band is a size
of 256 x 256 pixels, the U and V bands will be 1/4 the size of the
Y band in each dimension (width and height): 64 x 64 pixels,
which is 1/16 the size of the Y band. If a child buffer is 16 x 16
pixels, then the U and V bands will be 4 x 4 pixels. In other
words, the 4 x 4 U and V bands (16 pixels) is 1/16 the size of the
Y band (256 pixels).

Y plane U plane V plane

4 x 4 bytes 4 x 4 bytes4 x 4 bytes

54 Chapter 3: Specifying and managing your data buffers

Accessing a MIL buffer directly

If needed, a MIL buffer’s contents can be accessed directly. For
instance, if you want to calculate the average value of the pixels
of your image, you could create a custom algorithm. The
algorithm could be applied directly to the buffer without having
to copy the contents of the MIL buffer into a user-allocated
array (MbufAlloc()) by using MbufGet() and MbufPut(). To do
so would be more efficient and might improve the performance
of the custom algorithm.

In order to access the MIL buffer directly, the buffer’s address
and pitch must be known. Once you know this, you will be able
to access them directly for optimum performance.

Mapping a data buffer to user-allocated memory 55

Address The address of a parent or child buffer can be returned using
MbufInquire(). Selecting M_HOST_ADDRESS will return a
logical address, while M_PHYSICAL_ADDRESS will return a
physical address. In either case, the first address of the buffer
you are specifying will be the top left-most pixel in the image.
Knowing the pitch and the depth of the buffer will tell you the
address of the following row.

Pitch The pitch of a buffer is the number of units between the
beginnings of any two adjacent lines of the buffer’s data and
can be measured in pixels or bytes. Note that in some instances,
the pitch in bytes will be more accurate than in pixels. If the
last pixel falls outside of a 32-bit boundary (required by
Windows), the start of the next row will be located at the
beginning of the next 32-bit boundary; this process is called
internal padding. When measuring the pitch in pixels, the
padding can be counted as "extra" pixels, depending on the
depth of the pixels. This will result in an inaccurate pitch.

Mapping a data buffer to user-allocated
memory

Instead of allocating new memory to a buffer using
MbufAlloc...(), you can create a buffer from the memory at a
specified location, using MbufCreate2d() to create a
monochrome data buffer and MbufCreateColor() to create a
color data buffer. In these cases, MIL does not allocate any
memory; it uses the memory that you provide.

When creating a buffer with MbufCreateColor(), you must pass
an array of pointers to the addresses of the data. For packed
color buffers, you must pass an array of one pointer; for planar
buffers, you must pass an array with the same number of
pointers as the number of bands in the buffer. When creating a
buffer with MbufCreate2d(), you must pass the address of the
data. The address(es) can be either logical or physical. If you
want to use the buffer for grabbing, the address(es) must be
physical (grab buffers must be allocated in physically
contiguous and always present memory, that is, non-paged).
The MbufCreate...() functions must be used with caution
because, when using physical addresses, these functions

56 Chapter 3: Specifying and managing your data buffers

provide direct manipulation of any of your PC’s memory
mapped devices; when using logical addresses, memory
protection errors could result.

You can use MbufInquire() with the M_HOST_ADDRESS or
M_PHYSICAL_ADDRESS control type to determine the Host’s
logical address or the physical address of a buffer’s data,
respectively. Note that the physical address is not necessarily
an address in Host memory. It could be an address in on-board
memory. If an on-board buffer is mapped to the Host, you can
use the MbufInquire() function with the M_HOST_ADDRESS
inquire type to determine the Host address to which it is
mapped.

There are several instances when memory mapping is useful.
A particularly useful instance is when processing and
displaying an interlaced grab in a time critical application. In
this case, you could use a displayable buffer to store and display
the grabbed data. Then, to process each field as it is grabbed,
you could use a buffer that is mapped to the odd field of the
displayable buffer (Buffer 1) and a buffer that is mapped to the
even field (Buffer 2).

Create Buffers 1 and 2 as follows:

■ Buffer 1: (Odd field)

❐ Size = 640 x 240 (i.e., half height)

❐ Pitch = 1280 (i.e., to skip to the next field)

❐ Address = Address A (i.e., first pixel of the first row)

ODD

EVEN

ODD

EVEN

640

480

A
B

240

ODD

ODD

ODD

640

EVEN

EVEN

EVEN

640

240

A

B

Original buffer

Buffer 1 Buffer 2

Mapping a data buffer to user-allocated memory 57

■ Buffer 2: (Even field)

❐ Size = 640 x 240 (i.e., half height)

❐ Pitch = 1280 (i.e., to skip to the next field)

❐ Address = Address B (i.e., first pixel of the second row)

In general, MIL automatically issues a display update after a
displayed buffer has been modified. However, if a buffer
selected on the display is modified using a mapped buffer, its
display is not updated until you notify it of the change using
MbufControl(...M_MODIFIED...).

See Chapter 10: Data Manipulation with multiple systems for
another instance where creating buffers is useful.

Buffer A
Buffer B

Buffer A

58 Chapter 3: Specifying and managing your data buffers

Pixel conventions

The center of a pixel is important for all MIL functions which
return positional results with subpixel accuracy. The reference
position of a pixel is its center, and the resulting subpixel
coordinates are with respect to the pixel’s center.

With this in mind, the coordinates of the center of an image can
always be found using the following formula:

For example, the following image contains 4 pixels. If the
formula is applied, the center of the image is found at (1.5, 0).

width 1–
2

height 1–

2
-------------------------(,)

0 1 2 3

(1.5, 0.0)

Using buffers with the Bayer color filter 59

Using buffers with the Bayer color filter

Cameras that feature a Bayer color filter can be used with MIL
to provide a cost-effective method for grabbing color images: the
camera grabs a single-band color-encoded image, and then MIL
converts it to a multi-band color image, using the MbufBayer()
function. Bayer images are distinct from standard single-band
images because of the color information contained in their
pixels, which is extracted by the MbufBayer() function.

When grabbing from these cameras, each pixel quantifies only
one of the color components of the image in the camera’s field
of view at the corresponding location. Within a group of 2x2
pixels, there are two pixels containing color information for the
green component, and one pixel for each the red and blue
components; Bayer images contain more green pixels because
the human eye is more sensitive to this color. The pixels are
arranged in the following pattern: green pixels are always
diagonal to each other, as are the red and blue pixels.

The MbufBayer() function can also white balance the Bayer
image during conversion. White balancing adjusts an image for
color variations introduced by the lighting conditions when the
image was grabbed. The function converts pixels that represent
white so they appear as close to white as possible, and adjusts
other pixels accordingly. White balancing is discussed in
greater detail later in this section.

R R

RR

G

G

G

G

G

G

G GB B

BB

60 Chapter 3: Specifying and managing your data buffers

Using MIL to convert the image

The steps below describe, in general, how to convert a Bayer
image using MIL:

1. Determine the white balance coefficients (optional). For
information on how to calculate the white balance
coefficients, see the subsection, White balancing your Bayer
images.

2. Grab or load a Bayer image into your source buffer.

3. Apply the MIL Bayer filter on the image using MbufBayer(),
including the white balance coefficients, if using.

Below is an example of how to grab a Bayer image and convert
it to a 3-band color image. This example also shows how to
correct the white balance, which will be discussed later in this
section.

���
���5[PQRUKU��6JKU�RTQITCO�UJQYU�JQY�VQ�RGTHQTO�$C[GT�VQ�%QNQT�EQPXGTUKQP�
���
�KPENWFG��OKN�J
�KPENWFG��EQPKQ�J

XQKF�OCKP
XQKF�
���]
���/+.A+&�/KN#RRNKECVKQP�
����������/KN5[UVGO�
����������/KN&KIKVK\GT�
����������/KN&KURNC[�����������
����������/KN9$%QGHHKEKGPVU�
����������/KN+OCIG&KUR�
����������/KN+OCIG)TCD�
���
������7UGT�CTTC[�HQT�YJKVG�DCNCPEG�EQGHHKEKGPVU����
����HNQCV�9$%QGHHKEKGPVU=�?�

������5RGEKH[�VJG�$C[GT�RCVVGTP�QH�[QWT�ECOGTC����
����NQPI�%QPXGTUKQP6[RG���/A$#;'4A)4�

������$WHHGT�EJCTCEVGTKUVKEU����
����NQPI�:5K\G�
����NQPI�;5K\G����
���
������#NNQECVG�CP�CRRNKECVKQP����
����/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
����������������������/KN&KIKVK\GT��/A07..��

���
EQPV����

Using buffers with the Bayer color filter 61

����:5K\G���/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��
����;5K\G���/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��

������#NNQECVG�C�FKURNC[�DWHHGT����
����/DWH#NNQE%QNQT
/KN5[UVGO�����:5K\G��;5K\G���.
/A705+)0'&��/A241%
/A+/#)'�
��������������������/KN+OCIG&KUR��

������#NNQECVG�C�ITCD�DWHHGT����
����/DWH#NNQE%QNQT
/KN5[UVGO�����:5K\G��;5K\G���.
/A705+)0'&��
�������������������/A+/#)'
/A&+52
/A)4#$
/A241%���/KN+OCIG)TCD��

������#NNQECVG�CP�CTTC[�HQT�VJG�YJKVG�DCNCPEG�EQGHHKEKGPVU����
����/KN9$%QGHHKEKGPVU���/DWH#NNQE�F
/KN5[UVGO�������
/A(.1#6��/A#44#;��/A07..��
��
������&KURNC[�VJG�KOCIG����
����/DWH%NGCT
/KN+OCIG&KUR��/A4)$���
����������

����/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG&KUR��

������#UM�VJG�WUGT�HQT�C�YJKVG�KOCIG�HQT�YJKVG�DCNCPEG����
����RTKPVH
�2NCEG�C�YJKVG�RCRGT�KP�HTQPV�QH�VJG�ECOGTC�CPF���>
������������RTGUU��'06'4 �YJGP�TGCF[�>P���

����FQ�
�������]
����������)TCD�C�YJKVG�$C[GT�KOCIG����
��������/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG)TCD��

����������%QPXGTV�VJG�YJKVG�$C[GT�KOCIG�VQ�EQNQT�YKVJQWV�YJKVG�DCNCPEG����
��������/DWH$C[GT
/KN+OCIG)TCD��/KN+OCIG&KUR��/A&'(#7.6��%QPXGTUKQP6[RG��
�������_
����YJKNG�
�MDJKV
���
����IGVEJ
�����

������&GVGTOKPG�VJG�YJKVG�DCNCPEG�EQGHHKEKGPVU����
����/DWH$C[GT
/KN+OCIG)TCD��/KN+OCIG&KUR��/KN9$%QGHHKEKGPVU�
��������������%QPXGTUKQP6[RG
/A9*+6'A$#.#0%'A%#.%7.#6'��

������2TKPV�VJG�EQORWVGF�EQGHHKEKGPVU����
����/DWH)GV
/KN9$%QGHHKEKGPVU��
XQKF�����9$%QGHHKEKGPVU=�?�����

����RTKPVH
�>P9JKVG�DCNCPEG�EQTTGEVKQP�EQGHHKEKGPVU����H���H���H>P>P���
�����������9$%QGHHKEKGPVU=�?��9$%QGHHKEKGPVU=�?��9$%QGHHKEKGPVU=�?����

������)TCD�C�PGY�$C[GT�KOCIG�YKVJ�YJKVG�DCNCPEG�EQTTGEVKQP����
����RTKPVH
�2TGUU��'06'4 �VQ�ITCD�CP�KOCIG>P���

����IGVEJCT
��
���
���
EQPV����

62 Chapter 3: Specifying and managing your data buffers

How the Bayer image gets converted

Bayer images are arranged in groups of 2x2 pixels. Each group
contains one blue pixel, one red pixel, and two green pixels; the
values of which are used in calculating the corresponding bands
of the destination pixel. Your camera will grab an image with
one of the following four patterns:

You must specify the pattern that is used by your camera when
calling MbufBayer(). Since the green pixels are always diagonal
to each other, specifying the starting two pixels of the pattern
defines the pattern uniquely. Consult your camera’s

����FQ
�������]
����������)TCD�C�$C[GT�KOCIG����
��������/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG)TCD���

����������%QPXGTV�VJG�$C[GT�KOCIG�VQ�EQNQT����
��������/DWH$C[GT
/KN+OCIG)TCD��/KN+OCIG&KUR��/KN9$%QGHHKEKGPVU��%QPXGTUKQP6[RG��
��������_
����YJKNG�
�MDJKV
���

����IGVEJ
��

����RTKPVH
�2TGUU��'06'4 �VQ�GPF>P���

����IGVEJCT
��
���
������6GTOKPCVG�CPF�HTGG�GXGT[VJKPI�������
����/DWH(TGG
/KN+OCIG)TCD��
����/DWH(TGG
/KN+OCIG&KUR��
����/DWH(TGG
/KN9$%QGHHKEKGPVU��
����/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN&KIKVK\GT��
��������������������/A07..��
����_��

RG

GB

RG

GB

R G

G B

R

G

G

B

Using buffers with the Bayer color filter 63

documentation or contact the manufacturer if you are unsure;
the Bayer image will not be converted properly if you specify
the wrong pattern. If you cannot obtain information regarding
the pattern of your camera, try all of MbufBayer()’s supported
patterns to find the correct one.

The value of a source pixel is used in the corresponding band
of its destination pixel. The two remaining color components
use the average value of the source pixel’s corresponding
neighbors. If the source pixel is green, then the average value
for the remaining two components (red and blue) is based on
two neighboring pixels.

If the source pixel is either red or blue, the average value for
the remaining two components is based on four neighboring
pixels.

Note that if the source pixel is on an edge of the image, MIL
will use as many neighbors as possible when determining the
average pixel value for the remaining components.

When the destination buffer is in YUV format, MIL converts
the Bayer image first to RGB, and then to YUV.

B1 B3G2 G4

B21 B23G22 G24

G11 G13R12 R14

G31 G33R32 R34

B1 B3G2 G4

B21 B23G22 G24

G11 G13R12 R14

G31 G33R32 R34

B1 B3G2 G4 B1 B3G2 G4

B21 B23G22 G24 B21 B23G22 G24

G11 G13R12 R14 G11 G13R12 R14

G31 G33R32 R34 G31 G33R32 R34

64 Chapter 3: Specifying and managing your data buffers

White balancing your Bayer images
Sometimes grabbed images appear with “the wrong colors”.
This is due primarily to color distortions introduced by the light
source or lighting conditions. Such distortions can be corrected
by white balancing the image.

On the premises that white pixels should contain no
chrominance, white balancing applies a coefficient to each band
of the image so that “white” pixels contain no chrominance. For
RGB images, this means that a given white pixel’s value in all
3 bands is equal. For YUV images, this means that the U and
V bands of a white pixel are equal to 0. After white balancing
an image, pixels that are white appear white (or a shade of
gray), and the other pixels also appear with the correct colors.
The result is an image that more accurately reflects the colors
of the object that was grabbed.

The steps below show how to white balance Bayer images using
the MbufBayer() function:

1. Grab an image that is entirely white. This can be done by
holding a white object, such as a piece of paper, in front of
the camera. Ensure that the image is grabbed in the same
lighting conditions as subsequent source images. Note that
it is unlikely you will be able to grab an image whose pixel
values are exactly 255.

2. Allocate a 3 x 1 MIL array of type M_FLOAT using
MbufAlloc2d().

3. Call MbufBayer(), using the white image as the source
image, and adding M_WHITE_BALANCE_CALCULATE to
the control flag. This call calculates the coefficients required
to white balance the specified image and passes them to the
array.

4. Grab the image required for the Bayer conversion.

5. Call MbufBayer(), using the new source image and the
white balance coefficient array.

The white balance coefficients are calculated differently,
depending on whether your destination image is RGB or YUV.

Using buffers with the Bayer color filter 65

RGB images For an RGB destination image, three white balance coefficients,
a, b, and c, are calculated and passed to the array as the first,
second, and third values, respectively. These coefficients are for
a given lighting condition, and calculated such that given an
image of a flat white surface in that lighting:

where R, G, and B with macrons (¯) are the average values of
the red, green, and blue color components, respectively. When
subsequent source images are converted, the pixels of each color
component are multiplied by their corresponding coefficient.

YUV images For a YUV destination image, the coefficient of the Y component
is set to 1 by default. The remaining two white balance
coefficients, b and c, are calculated and passed to the array as
the second and third values, respectively. These coefficients are
for a given lighting condition, and calculated such that given
an image of a flat white surface in that lighting:

where U and V with macrons (¯) are the average values of the
U and V components, respectively. When subsequent source
images are converted, the pixels of the Y component are
multiplied by the first value of the array (1 by default), and the
pixels of the U and V bands are summed with the second and
third values in the array.

Monochrome images If the format of the destination buffer is 8-bit monochrome, the
pixels of the image are multiplied by the first value in the array,
which is 1 by default; the last two values in the array are
ignored.

Note that if your image is grabbed in dark conditions, you might
not only want to white balance your image, which will adjust
the colors in your image, but you might also want to adjust the
intensity. For monochrome and YUV images you can pass a
greater value as the first element of the array if your image is
dark; if your image is bright, pass a value greater than 0 and
less than 1.

aR bG cB= =

b U+ c V+ 0= =

66 Chapter 3: Specifying and managing your data buffers

Chapter 4: Lookup tables

This chapter describes lookup tables (LUTs). It shows you
how to generate and modify them and briefly discusses
how to use them.

68 Chapter 4: Lookup tables

Lookup tables

Lookup tables (LUTs) are collections of memory locations that
are used to map data to pre-calculated values. They can easily
reduce a multi-step or complex operation to a single-step LUT
mapping.

If the hardware system permits, you can use LUTs to
precondition input data at acquisition time, before it is stored
in an image buffer. LUTs can also be used (hardware system
permitting) to adjust the color contrast and intensity of an
image upon display, without affecting the actual data.

0
0

0
0
0

0

1

1 1

1

1

1 12
2 3 2

1

2
3

LUT index

0
84

170
255

LUT values

Original
8-bit image

Resulting
8-bit image

0
0
0
0

0
84 84

84
84

84 84170
170255170

84

LUTs and data buffers 69

LUTs and data buffers

LUT buffers The MIL package represents LUTs as LUT data buffers. As
with any other data buffer, LUT buffers must be allocated
before they are used. A LUT buffer can be loaded, stored, or
copied to another buffer (not necessarily to another LUT buffer)
or to disk. You can also allocate child LUT buffers. When a LUT
buffer is no longer required, you should free its memory space,
using MbufFree().

Allocating LUT buffers LUT buffers are typically one-dimensional data buffers created
with MbufAlloc1d() (single row). However, you can allocate a
color RGB LUT, using MbufAllocColor(). In this case, set the
number of bands to 3 (for RGB), the y-dimension to 1, and the
x-dimension to have enough entries to represent the full range
of possible values of the image buffer.

Loading and generating data into LUTs

With MIL, you can generate data directly into a LUT buffer or
calculate the data and then load it in a LUT buffer.

Generating data directly into the LUT buffer
You can generate general data directly into a LUT buffer, using
MgenLutRamp() or MgenLutFunction().

The MgenLutRamp() command generates a value for each LUT
index within the specified index range. The difference between
the start value and the end value divided by the number of
entries specified by the index range produces the increment.
The increment is then used to generate the remaining entries
of the index range.

If the increment is positive, MgenLutRamp() generates a ramp.
If the increment is negative, the command generates an inverse
ramp. If the increment is equal to zero, it loads the entire LUT
range with the given start value.

70 Chapter 4: Lookup tables

The MgenLutFunction() command generates a value for each
LUT index within the specified index range according to a
specified mathematical function. The functions available are:
M_LOG, M_EXP, M_SIN, M_COS, M_TAN, and M_QUAD. The
specified start value is used as the initial X value in the
equation. The remaining entries of the index range are
generated by incrementing the value of X by 1 for each index.

The MimHistogramEqualize() command can be used to create
a LUT for intensity correction.

Color LUTs When generating data in a color LUT buffer, the same data is
written to all bands.

To load each color band with different data, you would have to
generate the data into three separate one-dimensional LUT
buffers, then copy each buffer to the appropriate color band of
the color LUT buffer, using MbufCopyColor().

Alternatively, you can allocate three separate one-dimensional
child buffers into which the values for each color band will be
generated. The use of child buffers will cause the values for each
color band in the LUT buffer to be automatically updated and
no copying is necessary.

Loading LUTs with precalculated data

More complex LUTs There are several ways to generate more complex LUTs. Most
of these, however, involve pre-calculating the data, then loading
it into the LUT buffer:

■ Calculate data, using your Host system, and then load it into
the LUT, using MbufPut(), MbufPut1d(), or MbufPutColor().

■ Generate data into another data buffer, using MIL
commands other than MgenLutRamp(), then copy the data
to the LUT buffer, using MbufCopy() or MbufCopyColor().

■ Load previously saved LUT data from disk to the LUT buffer
(MbufLoad()). Note, when loading data from disk, there
should be enough data for each dimension of the LUT buffer.

■ Restore a previously saved LUT, using MbufRestore(). Note,
this command actually performs the LUT buffer allocation.

Using LUTs 71

Using LUTs

In MIL, LUTs can be used in different circumstances:

■ when displaying data (if supported by hardware)

■ when acquiring data from a digitizer (if supported by
hardware)

In each of these cases, if you want only a certain portion or
palette of the LUT to be used, allocate the palette as a child
buffer, and then specify the child LUT buffer identifier instead
of its parent.

Refer to the documentation accompanying your target system
device to determine under what circumstances it supports
LUTs.

Displaying using LUTs
When you want to map a displayable image buffer through a
LUT prior to displaying it, you need to associate the LUT buffer
with the display, using MdispLut(). If this feature is supported
by the hardware, it allows you to adjust the color contrast and
intensity upon display without affecting the actual image data
in memory.

The LUT buffer must match the pixel depth, and should either
have the same number of color bands as the display or have a
single color band. In the case of a single band, the same data is
loaded into each of the display color LUTs.

Monochromatic
effect

If you associate a one-band LUT buffer with a display, the same
data is loaded in each output channel LUT, and the same data
is routed to each output channel LUT. This produces a
monochromatic effect when displaying a single-band image.

Pseudo-color effect If you associate a three-band color LUT buffer (RGB) with a
display, each LUT buffer color band is loaded in the
corresponding output channel LUT. When displaying a
single-band image, the same data is sent to each LUT. This
produces a pseudo-color effect on the display.

72 Chapter 4: Lookup tables

True color effect As mentioned above, if you associate a one-band LUT buffer
with a display, the same LUT buffer data is loaded in each of
the available output channel LUTs upon display. Although the
same LUT values are used, you obtain a true color effect upon
display of a color image because, typically, each image color
band does not contain the same data. You generally want this
image and LUT configuration when performing gamma
correction to compensate for your monitor.

Finally, as is expected, associating a three-band color LUT with
a display creates a true-color effect upon display of a color
image.

Displaying image buffers with an associated LUT is further
discussed in Chapter 5: Displaying an image.

LUTs and digitizers

Associating a LUT to
a digitizer

Using MIL, you can map data from a digitizer through LUTs
during image acquisition (if the device supports a LUT). This
requires that you associate the LUT to the digitizer, using
MdigLut(). The LUT buffer must match the pixel depth of the
device. In addition, it should either have the same number of
color bands as the digitizer or have a single color band.

Chapter 5: Displaying an
image

This chapter discusses the display of image buffers, in
detail. It shows you how to display several images
simultaneously, and discusses some of the special effects
that can be applied to a displayable image buffer.

74 Chapter 5: Displaying an image

Displaying an image

Whether or not your imaging board has a display section, MIL
can display images. It will use the most appropriate graphics
controller in your computer for display purposes. If your
imaging board has a display section, and it is available, MIL
will typically use it for display purposes.

Displayable image
buffers

To display an image buffer, the buffer must have been allocated
with a displayable attribute (M_DISP). In addition, a display
must have been allocated using MdispAlloc() or
MappAllocDefault(). Note that the buffer and the display
should be allocated on the same system.

Selecting a buffer for
display

Once a buffer and a display have been allocated, use
MdispSelect() to select the image buffer to display. The buffer
is displayed in a dedicated window or at the top-left corner of
an auxiliary screen. If the specified image buffer is smaller in
size than the display, the border outside the buffer is blacked
out. If the specified image buffer is larger in size than the
display, the right and bottom part of the buffer, the part that
exceeds the display size, is not displayed.

Note that a buffer, or any of its child regions, can be selected on
more than one display.

Frame buffer This manual uses the term frame buffer to refer to physical
display (graphics controller) memory (not a buffer, per se).

Types of displays 75

Types of displays

You can allocate a display that, when an image is selected to
this display, it is either displayed:

■ With a windowed border, which is called a windowed
display (M_WINDOWED).

■ Without a windowed border on a dedicated screen, which is
called an auxiliary display (M_AUXILIARY).

You must specify either one of these two types of displays upon
allocating the display, with MdispAlloc().

❖ Typically, the default display type (M_DEFAULT) is
M_WINDOWED. However, a Matrox imaging board might be
dedicated for MIL auxiliary display, which can make the
default M_AUXILIARY. For more information, see the board’s
installation and hardware reference manual.

Windowed display

An image selected to a windowed display is displayed with a
windowed border on the Windows desktop screen(s). To choose
a windowed display, set the initialization flag for MdispAlloc()
to M_WINDOWED.

Extended desktop A windowed display is not affected by whether or not your
desktop is displayed using one screen or multiple screens. We
refer to these screens, either one or many, as the Windows
desktop screen(s). Under Windows 98, 2000, and Me, your
desktop can be extended over screens of different resolutions.
However, under Windows NT, you must observe the following
restrictions: all your monitor settings (resolution) must be the
same as your least-capable monitor, a maximum of 4 boards
(Matrox imaging boards and/or Matrox MGA boards) can be
used, and the extended desktop must be on screens that are
positioned in a horizontal, vertical, or tiled fashion.

All windowed displays (M_WINDOWED) are displayed in their
own MIL default window (or, as will be seen later, in a
user-allocated window). This window is transparently tracked

76 Chapter 5: Displaying an image

and updated with the image buffer selected to the display; that
is, if the window moves or is occluded, the window is
automatically updated with the image buffer accordingly.

Multiple windowed displays can be allocated and selected for
display; the display device number should always be set to
M_DEFAULT.

For windowed displays, MIL does not typically communicate
directly with the graphics controller, but uses the normal
Windows mechanisms (Windows API functions and extensions)
to display images. Upon selecting a windowed display, MIL
allocates a second image buffer in a Windows Device
Independent BITMAP (DIB) or DirectDraw format, passes
Windows the address of this buffer, and copies the contents of
the selected buffer to this displayed buffer. MIL also loads
display LUT buffers into Windows’ logical palettes (only in 256
color display resolution). Refer to the Microsoft SDK
Programming Guide for information on Windows’ DIBs,
DirectDraw, and logical palettes.

Auxiliary display
An image selected to an auxiliary display is displayed without
a windowed border or frame, at the top-left corner of a screen
that is not used to display the Windows desktop. This screen is
referred to as an auxiliary screen.

Note that in this context, the term screen refers to any device
that supports video output data, such as a high-resolution
monitor, TV, or VCR.

Types of displays 77

Auxiliary displays are supported with the following minimum
resources:

■ Two graphics controllers.

■ One DualHead graphics controller that integrates two CRT
controllers (for example, Matrox G400, G450, or G550).

❖ Note that the graphics controller can be on, or apart from,
the Matrox imaging board. Also, some boards might have
special features or limitations regarding auxiliary displays;
please see the MIL/MIL-Lite Board Specific manual.

You can only allocate one auxiliary display at a time on a given
auxiliary screen. Moreover, you are responsible for moving and
tracking an auxiliary display, if required. To choose this type of
display, set the initialization flag for MdispAlloc() to
M_AUXILIARY.

❖ When using an imaging board with a display section (for
example, Matrox Genesis), it might be necessary to set a Dip
switch to display on an auxiliary screen. For more
information, see the board’s installation and hardware
reference manual.

Video output format When allocating an auxiliary display, MIL does not impose any
restrictions on the video output format of the auxiliary screen.
The format can be:

■ A high-resolution format (for example, 1024x768x32@70 hz).

■ An encoded video format (for example, NTSC/PAL).

❖ For all the supported formats, see the MIL/MIL-Lite
Board Specific Notes.

The video output format of the auxiliary screen is set with the
display format parameter of MdispAlloc(). For example:

/FKUR#NNQE
/KN5[UVGO��/A&'(#7.6���/A065%���/A#7:+.+#4;���/KN&KURNC[���

/FKUR#NNQE
/KN5[UVGO��/A&'(#7.6�������Z���Z��"�����/A#7:+.+#4;���/KN&KURNC[���

78 Chapter 5: Displaying an image

The maximum number of auxiliary displays that can be
allocated is determined by the number of CRT controllers that
support the specified format. For example, two auxiliary
displays with high-resolution formats can only be allocated if
there are two available CRT controllers that support
high-resolution formats.

❖ When allocating a display, MIL checks for an appropriate
CRT controller, and not an appropriate device attached to it.
It is therefore possible to allocate an auxiliary display
without an auxiliary screen connected to the CRT controller.

Windows NT Under Windows NT, if the auxiliary screen is driven by the
same board as the Windows desktop screen, the desktop’s
resolution must be larger than the resolution of the auxiliary
display. For example, to allocate an auxiliary display with a
resolution of 1024x768x32, the Windows desktop’s resolution
must be at least 1152x864x32. Note that if the Windows desktop
screen and the auxiliary screen are controlled by two separate
graphics controllers that have their own frame buffers, this
restriction does not apply.

Matrox Millennium
G400, G450, G550

To use the second CRT controller of Matrox Millennium G400,
G450, or G550 for MIL auxiliary display, your display driver’s
DualHead mode must be disabled; otherwise both the display
driver and the MIL driver will attempt to access the second CRT
controller. In addition, the G400’s second CRT controller does
not support encoded video formats, but the G450 and G550 do.

❖ If the performance of the display is slow, make sure your
display driver’s DualHead mode is set correctly.

Types of displays 79

Display number
The display number parameter of MdispAlloc() should always
be set to M_DEFAULT. Based on the specified format, MIL will
find the best device to use when displaying an image. If your
imaging board has a display section, and it is available, MIL
will typically use it for display purposes.

❖ If you need to allocate an on-board image buffer, it is
important to note that, since MIL selects which device will
be used to display the image, you should only allocate this
buffer (MbufAlloc()) after allocating the display to which it
will be selected (MdispAlloc()).

Display size and depth
For windowed displays, the display format of the on-screen
portion of the frame buffers is set using the selected Windows
display resolution. In this case, the display format parameter
of MdispAlloc() should be set to M_DEFAULT.

For auxiliary displays, you set the display format with the
display format parameter of MdispAlloc().

When you select a buffer to a windowed display, Windows will
create a display of the same size as the buffer, unless such a
display cannot fit in the Windows desktop. If the image is too
large, there will be scroll-bars to view other parts of the image,
and the initial view of the image will be the upper-left corner.
If the image is too small, it will be centered in the buffer, and
the surrounding area will be blacked out.

80 Chapter 5: Displaying an image

Displaying buffers of different data depths
Displayable image buffers usually have a depth of 8-bits (or
3-band 8-bits, in the case of color images). For windowed
displays, you can display images of other depths (for example,
1-bit or 16-bit images). By using MdispControl() with the
M_VIEW_MODE control type, you can control the way such
buffers are actually displayed.

The M_VIEW_MODE control type provides different modes of
displaying non 8-bit images:

■ M_BIT_SHIFT

■ M_MULTI_BYTES

■ M_DEFAULT

M_BIT_SHIFT The M_BIT_SHIFT setting will bit shift the pixel values of the
image by the specified number of bits upon updating the
display.

Removing a buffer from the display 81

M_MULTI_BYTES The M_MULTI_BYTES setting is primarily useful when
grabbing from a multi-tap camera. This setting displays each
byte of the image in separate display pixels. For instance, each
pixel of a 16-bit image will occupy two consecutive display
pixels; each pixel of a 32-bit image will occupy four consecutive
display pixels.

M_DEFAULT The default setting is M_BIT_SHIFT.

Removing a buffer from the display

After displaying an image buffer (with MdispSelect()), you can
remove it from the display and close the associated window (for
windowed displays), or leave the display blank (for auxiliary
displays), using MdispDeselect(). To display a different image
buffer, you are not required to remove the current buffer from
the display; selecting another buffer for display automatically
updates the display with the new buffer.

Once you have finished using a display, you should free it, using
MdispFree(). If a displayed buffer is freed, the buffer is either
automatically removed from the display (for windowed
displays) or is left blank (for auxiliary displays).

82 Chapter 5: Displaying an image

Displaying multiple buffers

MdispSelect() allows you to view one buffer at a time in one
display. You can, however, use many windowed displays (up to
a maximum of 64) and therefore view more than one buffer at
the same time on the Windows desktop screen(s).

This is not the case for auxiliary displays, where you can only
display one display at a time on a given auxiliary screen.
However, you can still view more than one buffer at a time using
child buffers. For example, you can display the source and
destination buffers of an operation, using the following steps:

1. Allocate a large displayable buffer using MbufAlloc2d() or
MbufAllocColor(). This buffer will be known as the parent
buffer.

2. Allocate two non-overlapping child buffers within it, using
MbufChild2d() or MbufChildColor().

3. Select the parent buffer for display using MdispSelect().

4. Use one of the child buffers as the source image buffer and
the other as a destination image buffer of the operation.

The following portion of MIL code shows how to display
multiple buffers in a single display. The required portion of the
cell image, cell.mim, is loaded into a child of a displayable buffer
and then text is written into it. The result is stored in another
child of the same displayable buffer.

Displaying multiple buffers 83

���(KNG�PCOG��OOWNVFKU�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�FKURNC[�OQTG�VJCP�QPG�KOCIG�DWHHGT�CV�
��������������C�VKOG��+V�CNNQECVGU�C�FKURNC[CDNG�KOCIG�DWHHGT��CNNQECVGU�VYQ
��������������EJKNF�DWHHGTU�HTQO�KV��CPF�VJGP�WUGU�VJGUG�EJKNF�DWHHGTU�CU�VJG
��������������UQWTEG�CPF�FGUVKPCVKQP�QH�C�EQR[�QRGTCVKQP�+V�VJGP�YTKVGU�VGZV
��������������KP�GCEJ�QH�VJG�EJKNF�DWHHGTU�
��
��������������6JG�FKURNC[�YKNN�DG�\QQOGF�KH�VJG�U[UVGO	U�FKURNC[�UWRRQTVU�KV�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J
�KPENWFG��OKN�J

���/+.�KOCIG�HKNG�PCOG����
�FGHKPG�+/#)'A(+.'��������������EGNN�OKO��

���/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A9+&6*���������������.
�FGHKPG�+/#)'A*'+)*6��������������.
�FGHKPG�+/#)'A6;2'��������������.
/A705+)0'&
�FGHKPG�<11/A8#.7'��������������.

XQKF�OCKP
XQKF�
]
���/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����������������
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������������������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������������������
����������/KN2CTGPV+OCIG�������+OCIG�DWHHGT�KFGPVKHKGT����������������
����������/KN5TE5WD+OCIG�������5QWTEG�KOCIG�DWHHGT�KFGPVKHKGT���������
����������/KN&UV5WD+OCIG�������&GUVKPCVKQP�KOCIG�DWHHGT�KFGPVKHKGT����

�����#NNQECVG�VJG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
��������������������/A07..��/A07..��

�����#NNQECVG�C�FKURNC[�KOCIG�DWHHGT����
���/DWH#NNQE�F
/KN5[UVGO��+/#)'A9+&6*����+/#)'A*'+)*6��+/#)'A6;2'��
���������������/A+/#)'
/A&+52
/A241%���/KN2CTGPV+OCIG��
�����#NNQECVG�VYQ�EJKNF�DWHHGTU�HTQO�VJG�FKURNC[CDNG�RCTGPV�DWHHGT����
���/DWH%JKNF�F
/KN2CTGPV+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5TE5WD+OCIG���
���/DWH%JKNF�F
/KN2CTGPV+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN&UV5WD+OCIG��
���
EQPV����

84 Chapter 5: Displaying an image

�����%NGCT�VJG�RCTGPV�DWHHGT����
���/DWH%NGCT
/KN2CTGPV+OCIG���.��

�����&KURNC[�VJG�RCTGPV�DWHHGT����
���/FKUR5GNGEV
/KN&KURNC[��/KN2CTGPV+OCIG��

�����.QCF�VJG�GPVKTG�UQWTEG�KOCIG�KPVQ�VJG�UQWTEG�UWD�KOCIG�DWHHGT�����
���/DWH.QCF
+/#)'A(+.'��/KN5TE5WD+OCIG��

�����%QR[�VJG�UQWTEG�UWD�KOCIG�KPVQ�VJG�FGUVKPCVKQP�UWD�KOCIG���
���/DWH%QR[
/KN5TE5WD+OCIG�/KN&UV5WD+OCIG��

�����9TKVG�VGZV�KP�DQVJ�UWD�KOCIGU���
���/ITC6GZV
/A&'(#7.6��/KN5TE5WD+OCIG��+/#)'A9+&6*���+/#)'A*'+)*6���
�������������5QWTEG���
���/ITC6GZV
/A&'(#7.6��/KN&UV5WD+OCIG��+/#)'A9+&6*���+/#)'A*'+)*6���
�������������&GUVKPCVKQP���

�����4GRQTV�QP�VJG�*QUV�UETGGP�YJCV�KU�DGKPI�FKURNC[GF����
���RTKPVH
�#�EQR[�YCU�RGTHQTOGF�DGVYGGP�VJG�UWD�KOCIG�QP�VJG>P���
���RTKPVH
�NGHV�UKFG�QH�VJG�UETGGP�CPF�VJG�UWD�KOCIG�QP�VJG�TKIJV�UKFG>P���
���RTKPVH
�QH�VJG�UETGGP�CPF�VGZV�YCU�YTKVVGP�KPVQ�GCEJ�QH�VJGO�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P>P���
���IGVEJCT
��

�����4GRQTV�QP�VJG�*QUV�UETGGP�YJCV�KU�DGKPI�FKURNC[GF����
���RTKPVH
�&KURNC[�\QQOGF�D[��NF�KP�:�CPF�;�
KH�UWRRQTVGF��>P���<11/A8#.7'��

�����<QQO�DQVJ�UWD�KOCIGU�D[�\QQOKPI�VJG�FKURNC[����
���/FKUR<QQO
/KN&KURNC[��<11/A8#.7'��<11/A8#.7'��

�����9CKV�HQT�C�MG[���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��
��
�����%NQUG�VJG�FKURNC[����
���/FKUR&GUGNGEV
/KN&KURNC[��/KN2CTGPV+OCIG��
������
�����(TGG�CNN�CNNQECVKQPU����
���/DWH(TGG
/KN&UV5WD+OCIG��
���/DWH(TGG
/KN5TE5WD+OCIG��
���/DWH(TGG
/KN2CTGPV+OCIG��
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

Panning, scrolling, and zooming 85

Panning, scrolling, and zooming

At times, your image buffer might be larger than the display,
or have details that are too fine or too small to see. Display
effects can be associated with the display to view specific parts
of the image. These effects are panning, scrolling, and zooming.

Panning and scrolling Panning and scrolling displace an image horizontally or
vertically, respectively, on the display. You can pan and scroll
your image to display the appropriate location at the top-left
corner of the window (for windowed displays) or screen (for
auxiliary displays), using MdispPan().

Zooming Zooming is the horizontal and/or vertical replication of each
pixel by a given integer factor. You can zoom the display by an
integer factor using MdispZoom(); for example, zooming by a
factor of 2:

Note that zooming by a large factor might cause a "blocky"
effect. Also, you can reduce the size of an image on the display
by passing a negative zoom factor to MdispZoom().

Image placement For auxiliary displays, to view the image at another location on
the display, you must create a large displayable image buffer,
display it, and then allocate and use a child buffer at the
required location on the display. For windowed displays, this is
automatically handled.

MdispZoom(MilDisplay, 2, 2);

86 Chapter 5: Displaying an image

Annotating the displayed image
non-destructively

For either windowed displays or auxiliary displays, you can
annotate the displayed image non-destructively using MIL’s
overlay-display mechanism. To make use of this functionality,
do the following:

1. Enable the overlay-display mechanism using the following
function call:

2. Select a buffer to the display:

Since the overlay-display mechanism is enabled, this will
not only display the selected image, but it will also associate
a temporary overlay buffer with the display. This buffer is
referred to as the display’s overlay buffer. This overlay
buffer can be used to annotate the underlying image with
an effect called keying, which replaces pixels of one image
that are of the specified keying color with the underlying
areas of another image. Therefore, anything that you draw
in this overlay buffer in a color other than the keying color,
will annotate the image selected to the display.

3. To access the display’s overlay buffer, use the following call
to determine the MIL identifier of the buffer:

4. Draw into the display’s overlay buffer with the appropriate
graphics function (Mgra...()). For example, to write text in
the overlay buffer, use MgraText(). Note that since this
temporary overlay buffer is a real buffer, any function
(except grabbing) can be used.

❖ You can also annotate the displayed image buffer with
Windows GDI annotations, which is discussed later.

/FKUR%QPVTQN
&KURNC[+&��/A9+0&19A184A94+6'��/A'0#$.'�

/FKUR5GNGEV
&KURNC[+&��+OCIG$WH+F�

/FKUR+PSWKTG
&KURNC[+&��/A9+0&19A184A$7(A+&���1XGTNC[$WHHGT+&�

Annotating the displayed image non-destructively 87

Typically, the overlay buffer will have the same number of
bands and will be the same size as the buffer selected to the
display (not the size of the display). However, if you are using
a non 8-bit display resolution (15-bit, 16-bit, 24-bit, or 32-bit
color resolution), and the image selected to the display is 1
band, then the overlay buffer is 3 bands.

❖ Note that if the graphics controller does not have
non-destructive overlay capabilities, and you are using a non
8-bit display resolution (15-bit, 16-bit, 24-bit, or 32-bit color
resolution), a 1-band image will have a 1 band overlay buffer.

Overlay buffer behavior When an image is selected to a display that has an overlay
buffer associated with it, and you select another image to that
display, which:

■ Has the same dimensions as the image currently selected to
that display, the current overlay buffer is not freed. Any
annotations will, therefore, remain until you clear the
overlay buffer, with MbufClear().

■ Has different dimensions than the image currently selected
to that display, the current overlay buffer is freed, and
another overlay buffer is created. The annotations of the old
overlay buffer are copied into the new one. Note that the
overlay buffer is now the size of the new image selected to the
display.

CPU-assisted overlay The ability to annotate the displayed image non-destructively
by using MIL’s overlay-display mechanism is always available,
and is typically accomplished by your hardware (that is, your
graphics controller). However, if your hardware limits have
been reached, MIL produces a simulated version of the overlay
effect by using the CPU; the display is therefore said to be
CPU-assisted.

Keying When allocating a display (MdispAlloc()), keying is
automatically enabled, if required, and the keying color is
automatically set to a default color, which is generally
appropriate. This keying color can be read with the
M_KEY_COLOR inquire type of MdispInquire(). If required,
select another keying color with MdispOverlayKey().

88 Chapter 5: Displaying an image

If you are using an 8-bit display resolution (256 colors), set the
keying color to a value between 0 and 255. If you are using a
non 8-bit display resolution (15-bit, 16-bit, 24-bit, or 32-bit color
resolution), call the macro M_RGB888 and specify the RGB
value. For example:

/FKUR1XGTNC[-G[
���� /A4)$���
����������������

When the display’s overlay buffer is created, it is cleared to the
effective keying color. If the keying color is changed after the
overlay buffer is created, the buffer will not be cleared.

Using GDI annotations
If the display has been selected, you can also annotate the
displayed image buffer with Windows GDI annotations. Use
one of the following methods:

■ Allocate a Windows display device context (DC) for drawing
in the displayed image buffer. To do so, use MbufControl()
with M_WINDOW_DC_ALLOC. Inquire the identifier of this
context using MbufInquire() with M_WINDOW_DC. Then, use
this DC with Windows GDI function calls.

The buffer which you are annotating must be internally
stored in M_DIB or M_DDRAW format, and cannot be a child
buffer.

You can create a DC for either the image buffer or the overlay
buffer of the display. Note that if you create a DC for the
image buffer and then draw using this DC, drawing will be
destructive (that is, the data of the image buffer is actually
changed).

After either buffer is changed, signal MIL by calling
MbufControl(..., M_MODIFIED,...). When you have finished
using the DC, free it immediately by calling
MbufControl(...,M_WINDOW_DC_FREE,...).

❖ If using a DDRAW buffer, you must free the DC before
signalling MIL.

■ Inquire the display’s window handle using MdispInquire()
with M_WINDOW_HANDLE. Pass the window handle to the
Windows GetDC() function to get a Windows display device
context (DC). Then, paint the annotations with GDI functions

Annotating the displayed image non-destructively 89

from a function hooked to the display update event
(MdispHookFunction()); that is, paint each time the MIL
display is modified.

Note that drawing using this method is non-destructive (that
is, the actual data of the image buffer is not changed).

The following portion of MIL code shows the creation of the
device context of the overlay buffer, the inquiring of the device
context, and the drawing and writing in the overlay buffer
(see also, mdispovr.c).

�*&%���J%WUVQO&%�
�*2'0��JRGP��JRGP1NF�
�EJCT��EJ6GZV=��?�

���%TGCVG�C�FGXKEG�EQPVGZV�VQ�FTCY�KP�VJG�QXGTNC[�DWHHGT�YKVJ�)&+����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A9+0&19A&%A#..1%��/A&'(#7.6��

���+PSWKTG�VJG�FGXKEG�EQPVGZV����
�J%WUVQO&%���

*&%�/DWH+PSWKTG
/KN1XGTNC[+OCIG��/A9+0&19A&%��/A07..���
�KH�
J%WUVQO&%�
�]
�������%TGCVG�C�DNWG�RGP����
�����JRGP�%TGCVG2GP
25A51.+&�����4)$
�������������
�����JRGP1NF���5GNGEV1DLGEV
J%WUVQO&%�JRGP��
���������
�������&TCY�C�ETQUU�KP�VJG�QXGTNC[�DWHHGT����
�����/QXG6Q'Z
J%WUVQO&%���+OCIG*GKIJV���07..��
�����.KPG6Q
J%WUVQO&%�+OCIG9KFVJ�+OCIG*GKIJV����
�����/QXG6Q'Z
J%WUVQO&%�+OCIG9KFVJ�����07..��
�����.KPG6Q
J%WUVQO&%�+OCIG9KFVJ���+OCIG*GKIJV��
���������
�������9TKVG�VGZV�KP�VJG�QXGTNC[�DWHHGT����
�����UVTER[
EJ6GZV���)&+�1XGTNC[�6GZV����
�����5GV6GZV%QNQT
J%WUVQO&%�4)$
������������
�����6GZV1WV
J%WUVQO&%�+OCIG9KFVJ������+OCIG*GKIJV������EJ6GZV�
��������������UVTNGP
EJ6GZV���
�����5GV6GZV%QNQT
J%WUVQO&%�4)$
������������
�����6GZV1WV
J%WUVQO&%�+OCIG9KFVJ�������+OCIG*GKIJV������EJ6GZV�
��������������UVTNGP
EJ6GZV���������

�������&GUGNGEV�CPF�FGUVTQ[�VJG�DNWG�RGP����
�����5GNGEV1DLGEV
J%WUVQO&%�JRGP1NF��
�����&GNGVG1DLGEV
JRGP��
�_
����
���&GNGVG�ETGCVGF�FGXKEG�EQPVGZV����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A9+0&19A&%A(4''��/A&'(#7.6��
������
���5KIPCN�/+.�VJCV�VJG�QXGTNC[�DWHHGT�YCU�OQFKHKGF����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A/1&+(+'&��/A&'(#7.6��

90 Chapter 5: Displaying an image

Displaying an image in a user-defined
window

For windowed displays, images are automatically displayed in
a default window created by MIL, using MdispSelect(). This
function dynamically creates a window on the Windows desktop
for the specified display, if the display is not already selected.
The created window respects any window control that has been
associated with the display using an Mdisp...() function.

Selecting a buffer into a
specific display window

However, for windowed displays, you can choose to display a
specific image buffer in a user-defined window, using
MdispSelectWindow(). Note that typically, the display need not
have the same resolution as the image buffer. If the defined
window is of a different dimension than the image buffer, any
excess window area will be left untouched or any excess image
area will be cropped.

Using MdispSelectWindow()
The MdispSelectWindow() function is similar to MdispSelect(),
except that it allows you to specify the handle of the
user-defined window or child window to use for display, rather
than displaying into a MIL created window. This user-defined
window is automatically refreshed when the display is modified
(for example, when the image data is modified). You can use
MdispDeselect() to deselect the image from the display.

Note that the user-defined window must have been created
with Windows API functions. In addition, if the handle
parameter of MdispSelectWindow() is set to zero, this function
behaves like MdispSelect().

Displaying an image in a user-defined window 91

The following portion of MIL code from the mwindisp.c example
shows how to display an image in a user-defined window, grab
into such a window, and remove the image from the display.

�

���(KNG�PCOG��OYKPFKUR�E
��
���5[PQRUKU���6JKU�RTQITCO�FKURNC[U�C�YGNEQOKPI�OGUUCIG�KP�C�WUGT�
��������������FGHKPGF�YKPFQY�CPF�ITCDU�KPVQ�KV�
KH�UWRRQTVGF���+V�WUGU�
��������������VJG�/+.�U[UVGO�CPF�VJG�/FKUR5GNGEV9KPFQY
��HWPEVKQP�
��������������VQ�FKURNC[�VJG�/+.�DWHHGT�KP�C�WUGT�ETGCVGF�ENKGPV�YKPFQY��
��
��������������7UG�/FKUR&GUGNGEV
��VQ�TGOQXG�VJG�UGNGEVGF�KOCIG�DWHHGT�
��������������HTQO�VJG�FKURNC[�
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCNNQE�J
�KPENWFG��YKPFQYU�J
�KPENWFG��OKN�J
�KPENWFG��OYKPOKN�J
�KPENWFG��YKPIFK�J

�FGHKPG�$7(('45+<':�����������
�FGHKPG�$7(('45+<';�����������
�FGHKPG�$7(('45+<'$#0&������
�FGHKPG�/#:A2#6*A0#/'A.'0�����

���2TQVQV[RGU���
XQKF�/KN#RRNKECVKQP
*90&�7UGT9KPFQY*CPFNG��
XQKF�/KN#RRNKECVKQP2CKPV
*90&�7UGT9KPFQY*CPFNG��

���
��
���0COG����������/KN#RRNKECVKQP
�
��
���U[PQRUKU������6JKU�HWPEVKQP�KU�VJG�EQTG�QH�VJG�/+.�CRRNKECVKQP�VJCV
�����������������YKNN�DG�GZGEWVGF�YJGP�VJG��5VCTV��OGPW�KVGO�QH�VJKU
�����������������9KPFQYU�RTQITCO�YKNN�DG�UGNGEVGF��5GG�9KP/CKP
��DGNQY
�����������������HQT�VJG�RTQITCO�GPVT[�RQKPV�
��
�����������������+V�YKNN�WUG�/+.�VQ�FKURNC[�C�YGNEQOKPI�OGUUCIG�KP�VJG�
�����������������URGEKHKGF�WUGT�YKPFQY�CPF�VQ�ITCD�KP�KV�KH�KV�KU�UWRRQTVGF�
�����������������D[�VJG�VCTIGV�U[UVGO�
���

���
EQPV����

92 Chapter 5: Displaying an image

XQKF�/KN#RRNKECVKQP
*90&�7UGT9KPFQY*CPFNG�
]
������/+.�XCTKCDNGU���
����/+.A+&�/KN#RRNKECVKQP������/+.�#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO������������/+.�5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[�����������/+.�&KURNC[�KFGPVKHKGT���������
����������/KN&KIKVK\GT���������/+.�&KIKVK\GT�KFGPVKHKGT�������
����������/KN+OCIG�������������/+.�+OCIG�DWHHGT�KFGPVKHKGT����
����������
����NQPI�$WH5K\G:�
����NQPI�$WH5K\G;�
����NQPI�$WH5K\G$CPF�

������#NNQECVG�C�/+.�CRRNKECVKQP����
����/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��

������#NNQECVG�C�/+.�U[UVGO����
����/U[U#NNQE
/A&'(A5;56'/A6;2'��/A&'8���/A&'(#7.6���/KN5[UVGO��

������#NNQECVG�C�/+.�FKURNC[����
����/FKUR#NNQE
/KN5[UVGO��/A&'8���/A&'(A&+52.#;A(14/#6��/A&'(#7.6
�����/KN&KURNC[��

������#NNQECVG�C�/+.�FKIKVK\GT�KH�UWRRQTVGF�CPF�UGVU�VJG�VCTIGV�KOCIG�UK\G���
����KH�
/U[U+PSWKTG
/KN5[UVGO��/A&+)+6+<'4A07/��/A07..�� ���
����]
������/FKI#NNQE
/KN5[UVGO��/A&'8���/A&'(A&+)+6+<'4A(14/#6��/A&'(#7.6�
��������/KN&KIKVK\GT��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:������$WH5K\G:��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;������$WH5K\G;��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A$#0&���$WH5K\G$CPF��
����_
����GNUG
����]
������/KN&KIKVK\GT���/A07..�
������$WH5K\G:�������$7(('45+<':�
������$WH5K\G;�������$7(('45+<';�
������$WH5K\G$CPF����$7(('45+<'$#0&�
����_
������
������1PN[�CNNQY�GZCORNG�VQ�TWP�HQT�YKPFQYGF�FKURNC[U����������������
����KH�
/FKUR+PSWKTG
/KN&KURNC[��/A&+52.#;A/1&'��/A07..�����/A9+0&19'&��������������
����]
������/GUUCIG$QZ
�����6JKU�GZCORNG�QPN[�TWPU�HQT�YKPFQYGF�FKURNC[U���
��������������������/+.�CRRNKECVKQP�GZCORNG��
�������������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���
������IQVQ�GPF�
����_

���
EQPV����

Displaying an image in a user-defined window 93

������#NNQECVG�C�/+.�DWHHGT����
����/DWH#NNQE%QNQT
/KN5[UVGO��$WH5K\G$CPF��$WH5K\G:��$WH5K\G;���
/A705+)0'&�
����
/KN&KIKVK\GT!�/A+/#)'
/A&+52
/A)4#$���/A+/#)'
/A&+52����/KN+OCIG��

������%NGCT�VJG�DWHHGT���
����/DWH%NGCT
/KN+OCIG����

������5GNGEV�VJG�/+.�DWHHGT�VQ�DG�FKURNC[GF�KP�VJG�WUGT�URGEKHKGF�YKPFQY���
����/FKUR5GNGEV9KPFQY
/KN&KURNC[��/KN+OCIG��7UGT9KPFQY*CPFNG��

������2TKPV�C�UVTKPI�KP�VJG�KOCIG�DWHHGT�WUKPI�/+.�
�������0QVG��#HVGT�C�/+.�EQOOCPF�YTKVKPI�KP�C�/+.�DWHHGT��VJG�FKURNC[�
�������YKNN�CWVQOCVKECNN[�WRFCVG�VJG�YKPFQY�IKXGP�VQ�/FKUR5GNGEV9KPFQY
��
������

����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;���
�������������������������������
����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;��
���
���������9GNEQOG�VQ�/+.��������
����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;��
���
�������������������������������

������9KPFQYU�EQFG�VQ�QRGP�C�OGUUCIG�DQZ�VQ�YCKV�C�MG[����
����/GUUCIG$QZ
�����9GNEQOG�VQ�/+.�������YCU�RTKPVGF��
���������������/+.�CRRNKECVKQP�GZCORNG��
���������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���

������)TCD�KP�VJG�WUGT�YKPFQY�KH�UWRRQTVGF�D[�VJG�U[UVGO����
����KH�
/KN&KIKVK\GT�
����]
����������)TCD�EQPVKPWQWUN[����
��������/FKI)TCD%QPVKPWQWU
/KN&KIKVK\GT��/KN+OCIG��

����������9KPFQYU�EQFG�VQ�QRGP�C�OGUUCIG�DQZ�VQ�YCKV�C�MG[����
��������/GUUCIG$QZ
���%QPVKPWQWU�ITCD�KP�RTQITGUU��
��������������������/+.�CRRNKECVKQP�GZCORNG��
�������������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���
�������������������
����������5VQR�EQPVKPWQWU�ITCD����
��������/FKI*CNV
/KN&KIKVK\GT��
����_

������&GUGNGEV�VJG�/+.�DWHHGT�HTQO�VJG�FKURNC[����
����/FKUR&GUGNGEV
/KN&KURNC[��/KN+OCIG��

������(TGG�CNNQECVGF�QDLGEVU����
����/DWH(TGG
/KN+OCIG��
�
�GPF�

���/FKUR(TGG
/KN&KURNC[��
���KH�
/KN&KIKVK\GT�
�����/FKI(TGG
/KN&KIKVK\GT��
���/U[U(TGG
/KN5[UVGO��
���/CRR(TGG
/KN#RRNKECVKQP��
_

94 Chapter 5: Displaying an image

Palettes and output LUTs for windowed
display (256-color)

For windowed displays, when displaying in a 256-color
Windows display resolution, images are mapped through
physical output LUTs on display. Windows uses these LUTs to
achieve color; in addition, Windows uses the concept of a palette
to load these LUTs.

MIL provides Windows with good default logical palettes for
the realization of the physical output LUTs in a 256-color
display resolution. However, since not all colors are available
at this resolution, the default might not always be optimal for
certain atypical cases. Therefore, the physical output LUTs are
always available and programmable, by a user, to achieve the
best display effect for your images.

Reference material: Windows palettes and
physical output LUTs
Before describing the default and explaining how and why to
change it, a basic explanation of palettes and output LUTs is
discussed. For more detailed information, consult the following
reference:

Halibard, Moishe. Windows Developer’s Journal. "Palettes and
256 Colors." July, 2000.

Color images For windowed displays, in a 256-color display resolution, the
following example shows how a color image is consequently
displayed as the best color image possible:

1. The color image goes through Windows translation
functions. Windows searches the physical output LUTs for
the entry that best matches the color of the image’s pixels.
Depending on what colors are available, Windows
translates the image to an 8-bit index image.

Translation
Functions

8-bit
version of

image

Frame buffer
Physical

Output LUTs

R
G

BColor
image

R
G

B
G

R

B

Best
color image
possible

Best
Match

Palettes and output LUTs for windowed display (256-color) 95

2. The physical output LUTs subsequently translate that
index image and display it as the best color image possible.

Palettes and physical
output LUTs

Each of the color images’ palette is used to specify the required
colors. Windows uses these palettes to realize a system palette.
The system palette is ultimately loaded into the physical output
LUTs and is searched by the translation functions when
generating an 8-bit (index) image.

Note that the palette of the active window has priority over
available system palette entries and is therefore loaded in the
system palette first. Also, Windows tries to map colors from the
logical palette into the currently realized system palette to
reduce the number of requested new entries. This reduces the
chance of a color occurring more than once in the system
palette.

Palette
Default

LUT

buffer

MIL

Palette

Palette

System
Palette

Windows

Translation
Function

8-bit
version of

image

Frame buffer
Physical

Output LUTs

R
G

BColor
image

R
G

B
G

R

B

Best
color image
possible

Best
Match

96 Chapter 5: Displaying an image

Monochrome images Since LUTs are available, you can use them to create special
effects for 8-bit images. However, unlike color images, grayscale
values map to values at the corresponding index in their
associated palette.

Default palette settings
By default, windowed displays use the default MIL palette. MIL
provides good default logical palettes for the realization of the
physical output LUTs (MdispLut(..., M_DEFAULT, ...)). To
accomplish this, the MIL default takes into consideration the
number of bands of the image, and produces the best
performance versus visual quality compromise possible.

Why change the
default LUT values

If the default LUT values are not appropriate for your
application, you can change the LUT values to control the
displayed colors or gray levels of an image. Some situations that
might require special display effects are:

■ When displaying monochrome images, you might want to
view the images with each gray intensity in a different color.
For example, you can associate specific colors to ranges of
temperatures obtained by an infrared camera.

■ When displaying monochrome images, you might want to
invert the image values. For example, when grabbing a film
negative, you can negate the video and display the film as it
will be printed.

■ When displaying color images in a 256-color Windows display
resolution, you might want to reduce the loss of color
resolution. Generally, the default LUT values will not
optimize and distinguish between subtle differences in one
color. For example, when displaying a color image with many
shades of red, you might want to select a LUT so that all
shades of red in that particular image are being represented.

Translation
Functions

8-bit
version of

image

Frame buffer
Physical

Output LUTs

R
G

B
8-bit

grayscale
image

G
R

B

8-bit
pseudo-color

image

Best
Match

Map

Palettes and output LUTs for windowed display (256-color) 97

Changing the default LUT values
Change the default LUT values by associating a LUT to either
the display, using MdispLut(), or to the image buffer, using
MbufControl(), with M_ASSOCIATED_LUT. Changing the
default LUT values by associating a LUT to the display affects
all images displayed in that display. On the other hand,
changing the default LUT values by associating a LUT to the
buffer affects only the display of that buffer. In this case, when
the buffer is saved, the LUT is saved with it.

Viewing each gray
intensity in a different
color

To view an 8-bit image buffer with each gray intensity in a
different color, associate the default pseudo-color LUT buffer
(M_PSEUDO) with the display of the image. In this case, the
data is loaded in each component of the logical palette.

A 1-band custom LUT
buffer

To invert the values of an 8-bit image on display, you would need
physical output LUTs that map each value to the maximum
pixel value minus the current pixel value. To do so:

1. Allocate a 1-band 256-entry LUT buffer using
MbufAlloc1d().

2. Generate the data into the buffer using MgenLutRamp(), or
load the data into it, using MbufPut(). The depth of the LUT
buffer data must be 8 bits.

3. Associate the LUT buffer with the required display using
MdispLut(), or to a particular image using MbufControl()
with M_ASSOCIATED_LUT.

98 Chapter 5: Displaying an image

If you associate a 1-band LUT buffer with the display or buffer,
the same data is loaded into each component of the logical
palette.

A 3-band custom LUT
buffer

To reduce the loss of color resolution when displaying an image
with a specific range of colors, you would need physical output
LUTs that contain all the required colors so that, when
Windows creates a translation table for the image, most colors
are mapped to their exact values. To do so, allocate a 3-band
256-entry LUT buffer, and:

1. Take a histogram of the image.

2. Order and load frequently used colors in the LUT buffer
according to popularity (the most popular color first).

Be careful not to remove infrequent colors that illustrate
critical information.

3. Associate the LUT buffer with the required display using
MdispLut(), or to a particular image using MbufControl()
with M_ASSOCIATED_LUT.

LR0LR0
L0L0 LG0LG0

LB0LB0

LR1LR1
L1L1 LG1LG1

LB1LB1

LR255LR255L255L255 LG255LG255
LB255LB255

...

...
...
... ...

...
...
...

LUT R

Logical PaletteLogical Palette

LUT M

1-band LUT buffer1-band LUT buffer

LUT G LUT B

8/

L1L1

Palettes and output LUTs for windowed display (256-color) 99

When you associate the 3-band LUT buffer (RGB) with a
display and then select the display, each band of the LUT buffer
is loaded into its corresponding component of the logical palette.

❖ A 3-band LUT buffer can also be used to create a custom
pseudo-color LUT for 8-bit images.

Note that, when using physical output LUTs, you must keep
the following points in mind:

■ If the contents of a LUT buffer changes while the image is
selected on the display, the changes will not take effect until
calling MdispLut() again.

■ When displaying in a non-256-color display resolution, MIL
can simulate a display LUT in software only for 8-bit 1-band
images.

■ The LUT buffer must have one or three bands. The number
of LUT buffer entries must be the same as the maximum
number of intensities that can be represented in the
displayed image buffer. In other words, if you want to invert
an 8-bit grayscale image (that is, an image that can have 256
intensities), your LUT must also have 256 entries.

You can use MdispInquire() to obtain information about the
physical output LUTs of a display.

LR0LR0LR0LR0 LG0LG0LG0LG0 LB0LB0 LB0LB0

LR1LR1 LR1LR1LG1LG1 LG1LG1
LB1LB1 LB1LB1

LR255LR255LR255LR255 LG255LG255
LG255LG255LB255LB255 LB255LB255

...

...
...
...

...

...
...
...

...

...
...
...

LUT RLUT R

Logical PaletteLogical Palette3-band LUT buffer3-band LUT buffer

LUT GLUT G LUT BLUT B

8/

8/

8/

100 Chapter 5: Displaying an image

CPU-assisted display

All displays are typically accelerated by the graphics controller,
which means that CPU usage is low since the graphics
controller is handling the display. However, if your graphics
controller’s limits have been reached, MIL compensates by
making the display CPU-assisted. This results in higher than
expected CPU usage.

In addition to higher than expected CPU usage, you might
experience the following behaviors when your display is
CPU-assisted:

■ Overlay flickering.

■ Pseudo-live continuous grabbing.

Overlay flickering When your graphics controller’s limits have been reached, MIL
uses your CPU to implement the overlay-display mechanism.
Annotations in this overlay buffer might flicker, though they
are still non-destructive.

Grabbing continuously When your overlay buffer is CPU-assisted, the display can be
slower and a continuous grab operation is performed only in
pseudo-live. This is due to an additional operation needed to
combine the grabbed image with the display’s overlay buffer in
an intermediate buffer. Note that the actual image buffer
selected on the display is not overwritten by the contents of the
overlay buffer.

Avoiding CPU-assisted
displays

To avoid a CPU-assisted display, you can attempt to:

■ Lower your screen resolution or refresh rate.

■ Free all on-board buffers or displays that are no longer being
used.

Chapter 6: Generating
graphics

This chapter describes the graphics commands that are
available with MIL. These consist of drawing and
text-writing commands.

102 Chapter 6: Generating graphics

MIL and graphics

The MIL package supports basic drawing and text commands
that are useful in typical image processing or machine vision
applications. These commands could be used, for example, to
create a conditional buffer or to annotate an image.

Preparing for graphics

There are two requirements for graphics operations:

■ An image buffer in which to perform the operation.

■ A set of graphics parameters, referred to as a graphics
context, with which to perform the operation.

Graphics context Allocate a graphics context, using MgraAlloc(). Upon allocation,
each of the graphics parameters of the graphics context is set
to the default (refer to the MgraAlloc() command reference
description for the defaults). You can change these parameter
settings according to your needs.

Different graphics contexts can coexist. Use their identifier to
specify which to use or change.

Once a graphics context is no longer required, it should be freed,
using MgraFree().

When a MIL application is created, using MappAlloc() or
MappAllocDefault(), a default graphics context is
automatically created. It can be used as a normal graphics
context by specifying M_DEFAULT as the graphics context
identifier. Since M_DEFAULT is simply another graphics
context, you can change its parameter settings according to
your needs.

Preparing for graphics 103

Graphics
parameters

There are two basic parameters that apply to graphic objects:

1. Background color. This determines the background color of
textual graphic objects. The default background color value
is zero (typically corresponds to black). You can change this
color, using MgraBackColor().

2. Foreground color. This determines the color in which
graphic objects are drawn or written. The default
foreground color value is the highest positive buffer value
(typically corresponds to white). You can change this color,
using MgraColor().

Selecting colors A grayscale value can be any integer or floating-point number.
If the given value exceeds the range of the possible values that
can be stored in each band of the destination buffer, the least
significant bits of the value are used.

Clearing the buffer Once you are satisfied with the graphics parameters, you
should determine whether you need to clear the graphics image
buffer prior to drawing or writing to it. You can use MgraClear()
or MbufClear() to clear the buffer to a specific color.

104 Chapter 6: Generating graphics

Drawing graphics

With the MIL package, you can draw:

■ lines (MgraLine())

■ rectangles (MgraRect() and MgraRectFill())

■ arcs, circles, and ellipses (MgraArc() and MgraArcFill())

■ dots (MgraDot())

Using MgraLine(), MgraRect(), MgraArc(), or MgraDot(), you
can draw the outline of most required shapes. The outlines are
drawn one pixel wide.

In addition, the MIL package includes MgraRectFill() and
MgraArcFill() so you can draw solid rectangles and arcs.

If you need complex filled-in shapes, draw the outline of the
shape and use MgraFill() to fill it.

MgraDot()

MgraArc()

MgraArcFill()

MgraLine()

MgraRect()

MgraRectFill()

Drawing graphics 105

Filling shapes MgraFill() performs a boundary-type seed fill. It fills an area
of the target buffer with the current foreground color, starting
from the specified seed position. Filling occurs on adjacent
pixels of the same value as the original seed pixel.

Note, any drawing is clipped outside the boundaries of the
buffer.

Seed position

106 Chapter 6: Generating graphics

Writing text

You can also write text in the drawing area, using MgraText().
This command writes a null-terminated (\0) ASCII string at
the specified position in a given buffer, using the foreground
and background color and current font of the specified graphics
context.

When specifying the location at which to write the string, give
the top-left corner coordinates of the first character in the
string.

Although the graphics context specifies a default character font
and size, you can change the font and size of this context, using
MgraFont() and MgraFontScale(), respectively. MgraFont()
provides a set of predefined fonts from which to choose.

(x, y)

Chapter 7: Grabbing with
your digitizer

This chapter discusses the cameras supported
with MIL; it also discusses the control of your digitizers,
including the fine-tuning of the input, and auto-focusing.

108 Chapter 7: Grabbing with your digitizer

Cameras and input devices

The MIL package supports input from any type of input device
supported by the digitizer. Data grabbed from an input device
through the digitizer, using MdigGrab() or
MdigGrabContinuous(), is stored into an image buffer. Note,
since most input devices are cameras, they will hereafter be
referred to as such.

For a digitizer to be recognized by MIL, it must be allocated on
the target system, using MdigAlloc() (or MappAllocDefault()).
The allocation sets up the digitizer to match your camera’s data
format and to access the active input channel. Once you have
finished using a digitizer, you should free it, using MdigFree().

If you often use the same camera and prefer to use
MappAllocDefault() to set up and initialize your system, you
might want to update the milsetup.h file to reflect your camera.

When developing an application, it is recommended that you
use a simple camera. Once the application is working, switch
to a more sophisticated camera, if necessary. This approach
makes debugging much easier.

The data format 109

The data format

MdigAlloc() needs the camera’s digitizer configuration format
(DCF) to perform the digitizer allocation. The DCF defines such
parameters as the input frequency and resolution, and will
determine limits when grabbing an image.

MIL provides a number of predefined DCFs for the basic
cameras supported by your digitizer. Refer to the
MIL/MIL-Lite Board-specific notes manual for exact settings.
MIL also provides some DCF files that you can load if the
predefined DCFs don’t suit your needs.

Once a digitizer has been allocated, you can use MdigInquire()
to inquire about its settings.

If you find a DCF file that is appropriate for your camera (video
source), but need to adjust some of the more common settings,
you can do so directly, without adjusting the file, using the
Mdig...() commands. For more specialized adjustments, you can
adjust the file itself, using Matrox Intellicam.

If you cannot find an appropriate DCF file because, perhaps,
you have a non-standard video source (such as a strobe or
trigger device), you can create your own DCF file, using Matrox
Intellicam. For more information on Matrox Intellicam, refer
to the Matrox Intellicam User Guide manual.

If you cannot develop the required DCF using Matrox
Intellicam, you should provide the camera specifications to your
Matrox Technical Support Engineer. A suitable customized
DCF file can then be developed, if your digitizer supports the
camera.

110 Chapter 7: Grabbing with your digitizer

The digitizer number

In addition to the data format, MdigAlloc() requires that you
specify the digitizer number. The digitizer number specifies the
required digitizer, and its rank with respect to other digitizers
of the same type (color or monochrome) residing in the same
system. Note, if there is only one digitizer in the specified
system, you must specify the digitizer number as M_DEV0 or
M_DEFAULT.

Multiple cameras

MIL also supports applications that require input from
different cameras. In general, you cannot simultaneously
activate two cameras, whether or not they are connected to the
same digitizer.

The input channel Most digitizers have several multiplexed input channels. This
means that they have several channels but can only grab from
one of the channels at a time. In this case, if you have a camera
that is not connected to the first channel of its digitizer, you
must specify the channel, using MdigChannel().

If there are several cameras of the same data format connected
to a digitizer, you only need to allocate a digitizer with the DCF
of the first camera and use MdigChannel() to switch between
the others of the same type.

When using different cameras connected to the same digitizer,
a different DCF must be used for each camera. In general, to
switch between cameras of different formats, you have to
allocate the digitizer with one format, grab, free the digitizer,
and then allocate the digitizer again with the second format.
Some systems permit virtual digitizers (for example, Matrox
Corona-II) so that you can allocate several digitizers, specify a
channel for each digitizer, and then grab with the appropriate
digitizer, without having to free and re-allocate between
switches.

Grabbing a single field 111

Grabbing a single field

With interlaced scanning cameras, 2 fields are grabbed by
default; therefore one call to MdigGrab() will grab both the odd
and even fields. You can change the number of fields to 1 and
have MIL treat each field as one frame using MdigControl()
with M_GRAB_FIELD_NUM. Therefore, the grab time is reduced
by half. This control type can only be set to 1 or 2, and should
only be used for interlaced video. When set to 1, each field is
treated like a frame and the following digitizer hooks are
aligned with the field: M_GRAB_FRAME_START, M_GRAB_END,
and M_GRAB_FRAME_END. To achieve 60 fps in NTSC or 50 fps
in PAL, control type M_GRAB_START_MODE must be set to
M_FIELD_START.

Line-scan cameras

If your target digitizer supports it, you can grab from a line-scan
camera as you would, for example, an RS-170 type camera.
However, you should be aware of how data from these cameras
is stored.

When acquiring data from a line-scan camera, each line of each
destination buffer band is filled from top to bottom. The
operation will only end once the entire buffer has been filled.

112 Chapter 7: Grabbing with your digitizer

Grabbing to the display

Live and pseudo-live continuous grabs
With MIL, you can grab to a displayable buffer selected on a
display. MIL uses one of two methods to transfer when
grabbing:

■ Live grab. MIL grabs directly to the version of the buffer
that is physically allocated in the frame buffers (display
memory).

■ Pseudo-live grab. MIL grabs into the Host memory version
of the buffer and then updates the version in the frame
buffers (display memory).

See the Attribute section in Chapter 3: Specifying and
managing your data buffers for more information on
displayable buffers.

When grabbing, the digitizer (for example, Matrox Meteor-II)
always acts as the bus master.

In general, a continuous grab is live, and a monoshot grab is
pseudo-live. However, for auxiliary displays, it is possible to
perform a live monoshot grab by allocating your buffer directly
on the graphics controller with M_ON_BOARD.

By default, at the end of a continuous grab (live or pseudo-live),
a copy of the last image grabbed is made in the Host memory
version of the buffer (or on-board processing memory). This
allows the image to be processed. You can override the
copy-to-Host behavior, using MsysControl() with the
M_LAST_GRAB_IN_TRUE_BUFFER control type. Note that in
this case, the MdigGrabContinuous() call will not modify the
Host buffer in any way.

Grabbing to the display 113

Live transfer to the display
The digitizer can generally transfer all grabbed data directly to
display memory, when grabbing to an on-board display or when
grabbing to a graphics controller that supports fast
linear-memory accesses to its frame buffer.

Pseudo-live transfers to the display
If your graphics controller does not have non-destructive
overlay capabilities, a continuous grab will automatically
switch to pseudo-live if one of the following cases applies:

■ Your graphics controller does not support fast linear-memory
accesses (discussed later in this section).

■ The format of the grabbed data is not compatible with your
display resolution. For example, performing a color grab in a
256 color display resolution.

■ You are grabbing to a buffer selected to a windowed display
that is overlapped by another window.

■ You are displaying a windowed display, and the grab display
window does not have the focus (that is, it is not active).

■ Your windowed display occupies more than one screen.

Matrox
Digitizer

Matrox
Digitizer

Display

Graphics
Controller

PCI
Bus

Requires the use
of a specific graphics
controller

Video is transferred
directly to display
memory

Does not involve
the Host CPU

OR

114 Chapter 7: Grabbing with your digitizer

MIL transparently performs pseudo-live grabs:

By default, when a continuous grab switches to pseudo-live, it
will transparently double buffer the grab in Host memory. That
is, while the digitizer is grabbing one frame into a Host buffer,
the display driver performs a blit of the previous frame (stored
in the temporary Host buffer) to the frame buffers (graphics
controller’s display memory). Double-buffering can be disabled
using MsysControl() with M_DISPLAY_DOUBLE_BUFFERING.

Pseudo-live transfers will be real time (that is, full frame rate
of 30 for NTSC or 25 fps for PAL) if the CPU transfer from the
Host buffer to display memory is fast enough; that is, if the blit
is taking at most one frame for its length of time. Blit time is
affected by the load of the CPU (for example, the number of
process threads and the priorities of other boards).

You can reduce the load of the CPU in the pseudo-live grab
operation by disabling the double buffering operation.
However, when double buffering is disabled, only half of the full
frame rate can be achieved.

Graphics
Controller

Matrox
Digitizer

System RAM

PCI
Bus Video is transferred by

way of an intermediate
Host buffer

Any graphics controller
can be used

Video might need to be
scaled down to appropriate
size to be displayed in
real-time (depends on
graphics controller and
system)

Involves the
Host CPU

Grabbing to the display 115

Windowed displays For windowed displays, note that a continuous grab without
overlay can be moved from one screen to another and be
displayed live when it has the focus. However, when the window
displaying the grab intersects two screens, the grab is
pseudo-live.

❖ For windowed displays, a continuous grab with overlay can
be moved from one Windows desktop screen to another and
be displayed live when it has the focus, if your graphics
controller supports non-destructive overlay capabilities.

❖ When the Windows desktop is extended, very little CPU is
typically used to perform the pseudo-live grab.

Using an MGA graphics controller

Matrox recommends using Matrox MGA boards for real-time
display of video data. Selection of an MGA board depends on
your application’s requirements. To find out more about display
mode resolutions on a particular board, see the MIL/MIL-Lite
Board-specific notes manual.

Using a graphics controller other than MGA

If your graphics controller is not an MGA board, you must
reconfigure the [Vga] section in the mil.ini file.

The following is an example of a mil.ini configuration file,
describing the Matrox MGA Millennium-II PCI board (contact
your graphics controller vendor for this information). The
Matrox vendor identifier is 102B, the MGA Millennium-II
device identifier is 051B, the frame buffer is mapped to an
address, offset by 0 from its PCI base address of 0:

[Vga]

VgaVendorId=102B

VgaDeviceId=051B

VgaBaseAddressIndex=0

VgaBaseAddressOffset=0

116 Chapter 7: Grabbing with your digitizer

Instead of specifying all of the above parameters, you can
specify the graphics controller’s physical address:

VgaPhysicalAddress=EF000000

If the live grab operation does not have the proper pitch or the
proper pixel depth, the following optional entries must be
specified:

VgaPitch=400

VgaFormat=M_RGB15+M_PACKED

❖ All values are hexadecimal.

The default location of the mil.ini file is the Windows directory
under Microsoft Windows. A different location can be specified
using the environment variable, MILINIDIR.

Screen Tearing

Screen tearing occurs when the grab and the display are not
updated synchronously, for example:

The non-synchronous update between the grab and the display
causes two images to temporarily appear simultaneously, with
one of the images drifting down the screen line by line. When
the lag between the grab and the display is high, the drift is
fast; when the lag is slow, so is the drift.

Reference levels, lookup tables, and scaling 117

Your monitor’s vertical frequency must be a multiple of your
camera’s vertical frequency. In North America, this does not
present a problem since both monitors and cameras usually
function at 60Hz, although a phase shift can still cause tearing.
However in Europe, monitors function at 60Hz, while cameras
operate at 50Hz, therefore creating the disturbing visual effect.

MIL supports live grab with no tearing. The
M_LIVE_GRAB_NO_TEARING control type in MsysControl() sets
whether or not the no-tearing mode is enabled. This mode
requires special hardware, such as a Matrox Millennium G400,
G450, or G550 graphics controller. Note that if the
M_LIVE_GRAB_NO_TEARING control type is used and is not
supported, an error will be produced.

Reference levels, lookup tables, and
scaling

MIL provides functions to improve the appearance of a grabbed
image on input (if your hardware allows it). You can adjust the
brightness and contrast of the images, as well as the hue and
saturation for color grabs, by fine-tuning the controls of the
analog-to-digital converters in your system. You can also
correct and precondition the input data prior to storing it,
through scaling, or by mapping it through an input LUT.

Black and white reference levels

When digitizing images, the black and white reference levels
determine the zero and full-scale levels, respectively, of the
input voltage range. The analog-to-digital converters convert
any voltage above the white reference level to the maximum
pixel value, and any voltage below the black reference level to
a zero pixel value.

118 Chapter 7: Grabbing with your digitizer

Matrox digitizers support fine-tuning of these reference levels.
By reducing or increasing either or both the black and white
reference levels, you affect the brightness of the image. By
reducing one reference level and increasing the other, you affect
the contrast of the image.

MIL linearly represents the distance between the minimum
and maximum voltages, in which the black reference level can
be adjusted (hardware-specific), as units between
M_MIN_LEVEL and M_MAX_LEVEL. The same is done for the
white reference level adjustment range. These units are the
values by which you can adjust the specified reference level,
using MdigReference().

To calculate the value to pass to MdigReference(), use the
following equation with the appropriate voltages specified in
the MIL/MIL-Lite Board-specific notes manual for your
particular board.

The smallest voltage increment supported by your board can
differ such that consecutive reference-level settings might
produce the same result.

Note, the new reference level might not take effect until the
next grab, at which point, a certain amount of delay might be
incurred as the hardware adjusts to the reference-level
changes.

Voltage needed - minimum voltage

maximum voltage - minimum voltage

M_MAX_LEVEL - M_MIN_LEVEL

=
Value to pass to
MdigReference()

Reference levels, lookup tables, and scaling 119

Color image reference levels
When grabbing composite color images, MdigReference()
provides specific control parameters to adjust the levels of
contrast, brightness, hue, and saturation. These levels can be
set to values from 0 to 255. See the MIL/MIL-Lite
Board-specific notes manual for your particular board for more
details.

Mapping grabbed data through a LUT

You can correct or precondition input data by mapping it
through a LUT when grabbing (if the hardware permits). This
requires that you copy a LUT buffer to a digitizer’s physical
input LUT, using MdigLut().

You can copy a LUT buffer that has the same number of color
bands as the digitizer’s physical input LUTs. If you copy a
one-band LUT buffer to a digitizer that has more than one
physical input LUT, each of the digitizer's LUTs is loaded with
the same LUT buffer data.

In addition, the LUT buffer’s number of entries must match the
digitizer's input data range.

To revert to the default LUT values, you must copy the default
LUT (M_DEFAULT) to the digitizer. For digitizers, the default
LUT is one that maps pixels to the same values. This type of
LUT is typically referred to as a transparent LUT.

Scaling
The MdigControl() function allows you to scale grabbed data
horizontally and vertically. If you scale grabbed data, the stored
image size is different from the original image by the specified
factors in the X and/or Y direction. The scaled image is written
in contiguous locations in the image buffer, starting from the

120 Chapter 7: Grabbing with your digitizer

top-left corner. For example, if you set both the X and Y scaling
factors to 1/2, only one column and one row out of two are
written to the image buffer.

The X and Y scaling factors are independent. Note, depending
on the digitizer and camera used, some scaling factors might
not be available.

To disable scaling, set scaling factors to 1.

0 0

0 0

0 0

0

0

0

0 0

0 0

0 0

0 0

0

0

0

0

115

244

196 196

87 87 87 87 86 87

87 87 87 87

243

111

115

115

92 92

111

111

111 111

111

111 111

0

0 0

0 0

0 0

0

0

0 0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

45

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

215

215

215

0

0

0

0

0

0

115

196

87 87

243

115

92

0

0

0

0

0

0

0

0

0

0

0

0

Original image

X subsampling factor = ½
Y subsampling factor = ½

Subsampled image

Optimizing application performance when grabbing 121

Optimizing application performance when
grabbing

Grab mode

When grabbing data with MdigGrab(), you can control the
synchronization by setting the MdigControl() M_GRAB_MODE
control type to a value of M_SYNCHRONOUS,
M_ASYNCHRONOUS, or M_ASYNCHRONOUS_QUEUED (if
supported).

■ If the grab mode is set to M_SYNCHRONOUS, your application
will be synchronized with the end of a grab operation. In other
words, your application will wait until the grab has finished
before executing the next command.

■ If the grab mode is set to M_ASYNCHRONOUS, your
application will not be synchronized with the end of a grab
operation. This option allows other commands to execute
while still grabbing. This is a useful option when performing
double buffering, a technique whereby you can grab data into
one buffer while processing the previously grabbed buffer
(discussed below). Note, a call to another MdigGrab() before
the current grab has finished will cause your application to
wait until the current grab has finished.
MdigGrabContinuous() is by definition asynchronous since
you must use MdigHalt() to stop the grab.

■ If your imaging board supports queuing, you can set the grab
mode to M_ASYNCHRONOUS_QUEUED; if another grab is
issued before the first one is finished, the grab will be queued
on-board, allowing you to perform other processes while
waiting for the next MdigGrab() to be executed. Note, you can
still force your application to wait until the end of a grab
before executing an operation, by calling MdigGrabWait().

122 Chapter 7: Grabbing with your digitizer

Double buffering
Double buffering involves grabbing into one image while
processing the previously grabbed image. Double buffering
allows you to grab and process concurrently. You must switch
the destination of the grab between the two image buffers. In
addition, you need to synchronize the grabbing and processing
so that:

■ You do not process an image until an entire frame has been
grabbed into the buffer.

■ You do not grab into a buffer until the previous frame in that
buffer has been processed.

Below is an example (mdbproc.c) of how to perform double
buffering:

���(KNG�PCOG��/FDRTQE�E���
���6JKU�GZCORNG�FQGU�FQWDNG�DWHHGTGF�ITCD�YKVJ�TGCN�VKOG�RTQEGUUKPI���������
���0QVG��6JKU�CUUWOGU�VJCV�VJG�RTQEGUUKPI�QRGTCVKQP�KU�UJQTVGT�VJCP�C�ITCD��
���������CPF�VJCV�VJG�2%�JCU�UWHHKEKGPV�DCPFYKFVJ�VQ�UWRRQTV�VJG������������
���������QRGTCVKQPU�UKOWNVCPGQWUN[��#NUQ�KH�VJG�VCTIGV�RTQEGUUKPI�DWHHGT����
���������KU�PQV�QP�VJG�FKURNC[��VJG�RTQEGUUKPI�URGGF�KU�CWIOGPVGF�����������
���

���+OCIG�UECNG����
�FGHKPG�+/#)'A5%#.'�����

���JGCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��EQPKQ�J �
�KPENWFG��OKN�J �

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&���/KN#RRNKECVKQP�
���/+.A+&���/KN5[UVGO������
���/+.A+&���/KN&KIKVK\GT���
���/+.A+&���/KN&KURNC[�����
���/+.A+&���/KN+OCIG=�?����
���/+.A+&���/KN+OCIG&KUR���
��
���NQPI���0D2TQE�����
�
���
EQPV����

Optimizing application performance when grabbing 123

����#NNQECVKQPU����
��/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
��/U[U#NNQE
/A&'(A5;56'/A6;2'��/A&'(A5;56'/A07/��/A5'672���/KN5[UVGO��
��/FKI#NNQE
/KN5[UVGO��/A&'(#7.6��/A&'(A&+)+6+<'4A(14/#6�/A&'(#7.6��/KN&KIKVK\GT��
��/FKUR#NNQE
/KN5[UVGO��/A&'(#7.6��/A&'(A&+52.#;A(14/#6��/A&'(#7.6���/KN&KURNC[���

����#NNQECVG���ITCD�DWHHGTU����
��/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%���/KN+OCIG=�?��
��/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%���/KN+OCIG=�?��

����#NNQECVG���FKURNC[CDNG�DWHHGT�CPF�ENGCT�KV����
��/DWH#NNQE�F
/KN5[UVGO�
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%
/A&+52���/KN+OCIG&KUR��
��/DWH%NGCT
/KN+OCIG&KUR���Z���������������
���
���
���
�
����2WV�VJG�FKIKVK\GT�KP�CU[PEJTQPQWU�OQFG����
��/FKI%QPVTQN
/KN&KIKVK\GT��/A)4#$A/1&'��/A#5;0%*410175��
��
����)TCD�KPVQ�VJG�HKTUV�DWHHGT����
��/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?��
��
����2TQEGUU�QPG�DWHHGT�YJKNG�ITCDDKPI�VJG�QVJGT����
��YJKNG
��MDJKV
���
�����]
��������)TCD�UGEQPF�DWHHGT�YJKNG�RTQEGUUKPI�HKTUV�DWHHGT����
�����/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?��
���
���
���
���
EQPV������

124 Chapter 7: Grabbing with your digitizer

Multiple buffering
When an occasional frame takes longer to process than the time
required to grab, you can use a multiple buffering technique to
ensure that all processing is completed without losing any
frames. To perform multiple buffering, use the
MdigHookFunction(), when grabbing asynchronously, to hook
the grab function to certain grab events, such as the start or
end of a frame: the hooked function will interrupt the
processing to perform the grab, and return to continue
processing after the grab is initiated. You can grab into as many
buffers as required to ensure that all processing is finished
before overwriting a buffer with a new frame.

Note, processing is generally faster if the buffer is not on the
display.

���������2TQEGUU�VJG�HKTUV�DWHHGT�CNTGCF[�ITCDDGF������
���������0QVG��4GCN�VKOG�QPN[�KH�2%�KU�HCUV�GPQWIJ����
������/KO%QPXQNXG
/KN+OCIG=�?��/KN+OCIG&KUR��/A'&)'A&'6'%6��
�������
�������
�������
���������)TCD�HKTUV�DWHHGT�YJKNG�RTQEGUUKPI�UGEQPF�DWHHGT����
������/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?�

���������2TQEGUU�VJG�UGEQPF�DWHHGT�CNTGCF[�ITCDDGF�����
������/KO%QPXQNXG
/KN+OCIG=�?��/KN+OCIG&KUR��/A'&)'A&'6'%6��
������_
����
����
����
�����(TGG�CNNQECVKQPU����
���/DWH(TGG
/KN+OCIG&KUR��
���/DWH(TGG
/KN+OCIG=�?��
���/DWH(TGG
/KN+OCIG=�?��
���/FKUR(TGG
/KN&KURNC[��
���/FKI(TGG
/KN&KIKVK\GT��
���/U[U(TGG
/KN5[UVGO��
���/CRR(TGG
/KN#RRNKECVKQP��
_��

Grabbing with triggers and exposures 125

Grabbing a sequence of frames in real-time
To grab a sequence of frames in real-time, simply use
successive, asynchronous calls to MdigGrab():

You must also allocate a buffer for each frame of the sequence.
After you have grabbed a sequence, you can use the
MbufExportSequence() function to export the sequence of image
buffers (compressed or un-compressed 8-bit) to an AVI file.
When exporting, you must specify the number of buffers and
the frame rate (number of images/second) of the sequence. Note,
the MIL identifiers of the image buffers to export must be kept
in an array.

Use the MbufImportSequence() to import a sequence of images
from an AVI file into separate image buffers. You can import
compressed (MJPEG) or un-compressed 8-bit images. You can
also choose to import the sequence into automatically allocated
buffers or previously allocated buffers.

Grabbing with triggers and exposures

If your Matrox digitizer supports trigger input, this allows you
to grab a frame upon the occurrence of an event; that is, nothing
is grabbed when you call MdigGrab() or
MdigContinousGrab(), until a specified event occurs. When
grabbing continuously, the digitizer waits for a trigger before
grabbing each frame; you must still call MdigHalt() after
grabbing all required frames.

The camera’s digitizer configuration format (DCF) file specifies
whether or not to perform a triggered grab and exactly how it
should be carried out. For example, if the DCF specifies that an

���2WV�FKIKVK\GT�KP�CU[PEJTQPQWU�OQFG���
�/FKI%QPVTQN
/KN&KIKVK\GT��/A)4#$A/1&'��/A#5;0%*410175��

���)TCD�VJG�UGSWGPEG����
�HQT�
P����P�0D(TCOGU��P

�
����]
���������)TCD�QPG�DWHHGT�CV�C�VKOG����
�������/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=P?��
����_

126 Chapter 7: Grabbing with your digitizer

exposure signal should be generated (for the camera) upon the
grab trigger event, the actual grab would only be triggered once
the active exposure time was over.

You can use MIL commands to override the DCF trigger
settings. You can enable/disable whether
MdigGrab()/MdigContinousGrab() performs a triggered
grab using MdigControl() with M_GRAB_TRIGGER. You can
also specify the source and activation mode of the event upon
which to grab using MdigControl() with
M_GRAB_TRIGGER_SOURCE and then with
M_GRAB_TRIGGER_MODE.

Asynchronous reset mode
If your digitizer supports asynchronous reset mode, the
digitizer resets the camera to begin a new frame when the
trigger signal is received.

Otherwise, the digitizer waits for the next valid frame (or field)
before commencing to grab. The grab activation mode is
specified in the DCF file.

time
lapse even field

arrival of
trigger pulse

camera resets immediately to new
even field and starts to grab

external trigger

TTL signal

Video data

Asynchronous reset mode

Grabbing with triggers and exposures 127

Triggers and exposures
In MIL, there are two methods of grabbing with triggers and
exposures: the automatic exposure model and the manual
bypass model. They are described in detail in the following
diagrams. By default, MIL uses the automatic exposure model.
You can change this default using MdigControl() with
M_GRAB_EXPOSURE_BYPASS.

Automatic exposure
model

In the automatic exposure model, the digitizer is configured to
have the pipeline that is illustrated in the next diagram. (Note
that the defines specified in the following illustration are those
to be used with the MdigControl() function).

time lapse

even field odd field even field

arrival of
trigger pulse

start of grab is the beginning
of next even field

external trigger

TTL signal

Video data

Next valid frame (or field) mode

128 Chapter 7: Grabbing with your digitizer

To summarize:

■ MdigControl() with M_GRAB_TRIGGER_SOURCE selects
which signal to use as the source of the trigger (for example,
M_HARDWARE_PORT0). MdigControl() with
M_GRAB_TRIGGER_MODE, selects the trigger detection
method (for example, trigger on the rising edge of the signal).

■ If the exposure time (MdigControl() with
M_GRAB_EXPOSURE_TIME) is zero, the trigger sets off the
grab trigger module immediately, initiating the actual grab.
The exposure timers are bypassed.

■ If you set the exposure time to a non-zero value, an exposure
signal is generated with an active period equal to the
specified exposure time (M_GRAB_EXPOSURE_TIME). The
active period occurs after the specified delay
(M_GRAB_EXPOSURE_TIME_DELAY). The signal will be
generated with the specified polarity
(M_GRAB_EXPOSURE_MODE). The end of exposure will
trigger the grab trigger module, initiating the actual grab.

(M_GRAB_EXPOSURE_BYPASS set to M_DISABLE or M_DEFAULT)

MUX

Detect

Trigger selection
and detection

trigger source (M_GRAB_TRIGGER_SOURCE)1

trigger detection method (M_GRAB_TRIGGER_MODE)2

2

exposure delay (M_GRAB_EXPOSURE_TIME_DELAY)3

3

exposure time (M_GRAB_EXPOSURE_TIME)4

bypass exposure timers if exposure time = 0 (M_GRAB_EXPOSURE_TIME)6

4

polarity of exposure signal (M_GRAB_EXPOSURE_MODE)5

MUX Grab

1

6

* exposure timers will be cascaded automatically (if necessary)
to generate one signal that has the required delay and active time

5

Exposure timers*
Grab
trigger
module

or

Grabbing with triggers and exposures 129

Manual exposure
bypass model

In the manual bypass model, you are responsible for enabling
and setting-up all the exposure timers and grab trigger
connections

Exposure timer2 (T2)

Exposure
trigger
source2

Exposure
trigger
source1

Manual exposure bypass model
(M_GRAB_EXPOSURE_BYPASS set to M_ENABLE)

Grab

Grab trigger module

(M_GRAB_EXPOSURE_SOURCE + M_TIMER1)

(M_GRAB_EXPOSURE_MODE + M_TIMER1)

(M_GRAB_EXPOSURE_TRIGGER_MODE + M_TIMER1)

(M_GRAB_EXPOSURE_TIME_DELAY + M_TIMER1)

(M_GRAB_EXPOSURE_TIME + M_TIMER1)

1

2

3

4

5

(M_GRAB_EXPOSURE_SOURCE + M_TIMER2)

(M_GRAB_ TRIGGER_MODE + M_TIMER2)EXPOSURE_

(M_GRAB_EXPOSURE_MODE + M_TIMER2)

(M_GRAB_EXPOSURE_TIME_DELAY + M_TIMER2

6

7

8

9

10

11

12

(M_GRAB_EXPOSURE_TIME + M_TIMER2)

(M_GRAB_TRIGGER_SOURCE)

(M_GRAB_TRIGGER_MODE)

10

9

Exposure timer1 (T1)

Active level
for exposure

signal

Timer2
enabled
switch

68

Active level
for exposure

signal

Timer1
enabled
switch

13

7

Detect

MUX

6

Trigger selection and
detection

2

Detect

MUX

1

Trigger selection and
detection

4

5

Delay
before
Exposure

Exposure
time

Delay
before
Exposure

Exposure
time

T1

Hrd
Port

T2

Hrd
Port

Hrd
Port

T1
T2

Grab
trigger
source

MUX

11

12

Detect

130 Chapter 7: Grabbing with your digitizer

Software triggers
In general, the digitizer’s grab trigger module and exposure
timers can also be triggered by software (M_SOFTWARE). In this
case, following a grab call, nothing is grabbed until you call a
specific function (discussed below). Note that in this case, the
grab call must be asynchronous (that is, issue the grab with
MdigGrab() in asynchronous mode or with
MdigGrabContinuous()) or the grab call must be called on a
separate thread.

In the automatic
exposure model

In the automatic exposure model, issue the software trigger by
calling MdigControl() with M_GRAB_TRIGGER and
M_ACTIVATE. This will trigger the grab if the exposure time
is 0, otherwise the call will trigger the exposure signal which
in turn will trigger the grab.

In the manual bypass
model

In the manual bypass model, to issue a software trigger for the
grab trigger module, call MdigControl() with
M_GRAB_TRIGGER and M_ACTIVATE. To issue a software
trigger for one of the exposure timers, call MdigControl() with
M_GRAB_EXPOSURE+M_TIMERn and M_ACTIVATE.

Note, for a digitizer without an exposure timer, the exposure
time is considered to be zero.

Chapter 8: Color

This chapter discusses how to handle objects in color with
MIL.

132 Chapter 8: Color

Dealing with color

MIL supports grabbing, displaying, and accessing color images.

MIL can represent an object in color with a single color buffer,
allocated with MbufAllocColor().

Grabbing

You grab from an input device (typically a camera) into a color
image buffer, as you would into a two-dimensional grayscale
image buffer, by calling MdigGrab() or MdigGrabContinuous().

Before performing a color grab, a digitizer must be allocated,
using MdigAlloc() (or MappAllocDefault()), specifying a color
digitization data format. In addition, the digitizer and the
image buffer must be allocated on the same system and have
compatible dimensions. Once you have finished using the
digitizer, you should free it, using MdigFree().

When grabbing from a color digitizer, each color component is
transmitted simultaneously. The destination buffer must have
the same number of color bands as the digitizer. The data is
simultaneously stored in the appropriate component of the
image buffer. When grabbing RGB, the red component is stored
in the first color band, the green component is stored in the
second color band, while the blue component is stored in the
third color band.

Grabbing 133

If the hardware permits, you can control the digitization
reference level of each channel, using MdigReference().

❖ Note, upon installation, if you specified a color camera, the
default image buffer allocated with MappAllocDefault() will
be a three-band color image buffer. If you didn’t specify a color
camera, but would now prefer to use one, you might want to
update the milsetup.h file to reflect the desired defaults for
the allocation of your color camera and a color image buffer.

Note, most examples in this manual assume that the target
system has a monochrome digitizer, and that the camera and
default image buffer are monochrome. To run the examples
using a color digitizer and image buffer, you must modify the
code appropriately.

Mapping grabbed
data through a LUT

You can also correct or precondition input data by mapping it
through a LUT upon acquisition (if the hardware permits). This
requires that you associate a LUT buffer with the input device,
using MdigLut().

The LUTs that can be associated to a digitizer are either
one-dimensional LUT buffers (single rows) or LUT buffers that
have the same number of color bands as the digitizer. If you
associate a one-dimensional LUT buffer with the digitizer, each
of the digitizer’s color band input LUTs is loaded with the
one-dimensional LUT buffer data. If you associate a multi-band
LUT buffer with the digitizer, each of the digitizer’s color band
LUTs is loaded with its corresponding color band LUT buffer
data.

Note, the LUT buffer depth must match the digitizer’s pixel
depth.

To disassociate the LUT buffer from the digitizer, you need to
associate the digitizer with the default LUT, using M_DEFAULT
as a parameter to MdigLut().

134 Chapter 8: Color

Displaying

You display a color-image buffer as you would a
two-dimensional grayscale image buffer. You must first allocate
the image buffer with a displayable attribute (M_DISP), then
select it for display, using MdispSelect(). To stop displaying the
image buffer and leave the display blank, use MdispDeselect().

Before you can display a buffer, the display must be allocated,
using MdispAlloc() (or MappAllocDefault()). The image buffer
and the display should be allocated on the same system and
have compatible dimensions.

When you display a color-image buffer (usually RGB), the first
band is routed to the first output channel (usually red), the
second band is routed to the second output channel (usually
green), while the third band is routed to the third output
channel (usually blue).

When a display is allocated, a default pass-through LUT
(transparent LUT) is loaded into the output LUT(s) (if any). You
can change the displayed colors of an image by associating a
lookup table (LUT) to the display, using MdispLut().

When you associate a one-color-band LUT buffer with a display
that has more than one output LUT, the same LUT buffer data
is loaded in each of the available output channel LUTs.

When you associate a multi-band LUT buffer to a display that
has multiple output LUTs, each output LUT is loaded with the
data of the corresponding LUT buffer color band.

To disassociate the LUT buffer from the display, you need to
associate the display with the default LUT, using M_DEFAULT
as a parameter to MdispLut().

Saving and loading color images 135

Saving and loading color images

MIL supports the saving and loading of color images from disk
in different file formats. See the MbufSave(), MbufLoad(),
MbufRestore(), MbufImport(), and MbufExport() command
reference descriptions in Part II: The MIL-Lite reference for
more details.

Note, all the MIL data allocation, access, and generation
(Mbuf...() and MgenLut...()) commands can handle color image
buffers.

How to manage your color buffer

The following example demonstrates some ways in which to
manage your color buffers:

���(KNG�PCOG��OEQNQT�E
���5[PQRUKU���6JKU�RTQITCO�CNNQECVGU�C�FKURNC[CDNG�EQNQT�KOCIG�DWHHGT�
��������������FKURNC[U�KV��CPF�NQCFU�KVU�EQPVGPVU�YKVJ�C�EQNQT�KOCIG�
��������������+V�VJGP�FQGU�C�EQR[�QH�VJKU�KOCIG�CPF�YTKVGU�VGZV�KPVQ�VJG
��������������EQNQT�EQORQPGPVU�
4)$��QH�VJG�EQR[�QH�VJG�KOCIG�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J �

���5QWTEG�/+.�KOCIG�HKNG�URGEKHKECVKQPU�����
��FGHKPG�+/#)'A(+.'��������������DKTF�OKO�
��FGHKPG�+/#)'A9+&6*���������������.
��FGHKPG�+/#)'A*'+)*6��������������.
��FGHKPG�+/#)'A$#0&��������������.
��FGHKPG�+/#)'A&'26*�������������.

XQKF�OCKP
XQKF�
]�
��/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
���������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
���������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
���������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����
���������/KN5WD+OCIG����������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�UQWTEG�KOCIG������
���������/KN5WD+OCIG����������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�EQRKGF�KOCIG������
���������/KN5WD+OCIG�4GF������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�TGF�EQORQPGPV�����
���������/KN5WD+OCIG�)TGGP����5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�ITGGP�EQORQPGPV���
���������/KN5WD+OCIG�$NWG�����5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�DNWG�EQORQPGPV����
��NQPI���+OCIG5K\G:�����������+OCIG�YKFVJ�����
���������+OCIG5K\G;�����������+OCIG�JGKIJV����
��
EQPV����

136 Chapter 8: Color

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��/A07..��/A07..��

�����(KPF�VJG�DGUV�UK\G�HQT�VJG�FKURNC[�KOCIG�FGRGPFKPI�QP�VJG�FKURNC[�V[RG����
���KH�
/FKUR+PSWKTG
/KN&KURNC[�/A&+52A/1&'�/A07..���/A9+0&19'&�
���]
�������+OCIG5K\G:���+/#)'A9+&6*�����
�������+OCIG5K\G;���+/#)'A*'+)*6�
���_
���GNUG
���]
���������6JG�UK\G�QH�VJG�GPVKTG�FKURNC[�VQ�CXQKF�RQUUKDNG�FKURNC[�CTVKHCEVU����
�������+OCIG5K\G:���OKP
/FKUR+PSWKTG
/KN&KURNC[�/A5+<'A:�/A07..���/A&'(A+/#)'A5+<'A:A/#:��
�������+OCIG5K\G;���OKP
/FKUR+PSWKTG
/KN&KURNC[�/A5+<'A;�/A07..���/A&'(A+/#)'A5+<'A;A/#:��
���_

�����#NNQECVG�C�EQNQT�FKURNC[�KOCIG�DWHHGT�VQ�RGTHQTO�RTQEGUUKPI�KP�KV����
���/DWH#NNQE%QNQT
/KN5[UVGO��+/#)'A$#0&��+OCIG5K\G:��+OCIG5K\G;�
������������������+/#)'A&'26*
/A705+)0'&��/A+/#)'
/A&+52
/A241%���/KN+OCIG��

�����%NGCT�VJG�KOCIG�DWHHGT����
���/DWH%NGCT
/KN+OCIG���.��

�����&KURNC[�VJG�KOCIG�DWHHGT����
���/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

�����'PCDNG�MG[KPI�QP�FKURNC[�KH�KV�KU�UWRRQTVGF����
���KH�

/A&'(A&+52.#;A-';A'0#$.'A10A#..1%���������
��������/FKUR+PSWKTG
/KN&KURNC[�/A&+52A-';A5722146'&���
�������
������/FKUR1XGTNC[-G[
/KN&KURNC[�/A-';A10A%1.14�/A'37#.��Z((.�
����������������������/A&'(A&+52.#;A-';A%1.14��

�����&GHKPG���UWD�KOCIG�DWHHGTU�KP�VJG�FKURNC[�DWHHGT��TGUVTKEVKPI�VJG
�����YQTM�TGIKQPU�VQ�VJG�KOCIG�UK\G�
�����
���/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5WD+OCIG���
���/DWH%JKNF�F
/KN+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5WD+OCIG���

�����.QCF�C�EQNQT�KOCIG�KP�KOCIG������
���/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG���

�����2TKPV�C�OGUUCIG����
���RTKPVH
�#�EQNQT�UQWTEG�KOCIG�YCU�NQCFGF�CPF�FKURNC[GF�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��
��
EQPV����

How to manage your color buffer 137

�����%QR[�VJG�EQNQT�KOCIG����
���/DWH%QR[
/KN5WD+OCIG���/KN5WD+OCIG���

�����%TGCVG�EJKNF�DWHHGTU�VJCV�OCR�VQ�VJG�TGF��ITGGP�CPF�DNWG�EQORQPGPVU����
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A4'&�����/KN5WD+OCIG�4GF��
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A)4''0���/KN5WD+OCIG�)TGGP��
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A$.7'����/KN5WD+OCIG�$NWG��

�����9TKVG�EQNQT�CPPQVCVKQPU�KP�GCEJ�EQORQPGPV�QH�VJG�EQRKGF�KOCIG����
���/ITC%QNQT
/A&'(#7.6���Z((��
���/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG�4GF�
������������+/#)'A9+&6*�����+/#)'A*'+)*6�����617%#0���
���/ITC%QNQT
/A&'(#7.6���Z����
���/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG�)TGGP�
������������+/#)'A9+&6*�����+/#)'A*'+)*6�����617%#0���
���/ITC%QNQT
/A&'(#7.6���Z����
���/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG�$NWG�
������������+/#)'A9+&6*�����+/#)'A*'+)*6�����617%#0���

�����2TKPV�C�OGUUCIG����
���RTKPVH
�6JG�EQNQT�UQWTEG�KOCIG�KP�VJG�VQR�NGHV�EQTPGT�YCU�EQRKGF�KP�VJG>P���
���RTKPVH
�VQR�TKIJV�EQTPGT�KOCIG�CPF�EQNQT�VGZV�CPPQVCVKQP�YCU�FQPG�KP�KV�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����&KUCDNG�MG[KPI�QP�VJG�FKURNC[�KH�KV�KU�UWRRQTVGF����
���KH�

/A&'(A&+52.#;A-';A&+5#$.'A10A(4''���������
�������/FKUR+PSWKTG
/KN&KURNC[�/A&+52A-';A5722146'&����
�������/FKUR1XGTNC[-G[
/KN&KURNC[�/A-';A1((�/A07..�/A07..�/A07..��

�����4GNGCUG�UWDKOCIGU�CPF�EQNQT�KOCIG�DWHHGT����
���/DWH(TGG
/KN5WD+OCIG�4GF��
���/DWH(TGG
/KN5WD+OCIG�)TGGP��
���/DWH(TGG
/KN5WD+OCIG�$NWG��
���/DWH(TGG
/KN5WD+OCIG���
���/DWH(TGG
/KN5WD+OCIG���
���/DWH(TGG
/KN+OCIG��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

138 Chapter 8: Color

Chapter 9: JPEG compression

This chapter describes how to compress and decompress
images.

140 Chapter 9: JPEG compression

Introduction

MIL-Lite allows you to compress and decompress images and
sequences. Compression allows you to store more images in
memory than would normally be possible. In addition,
compression allows images to be transferred more quickly, since
it reduces the amount of data that must be transferred.
MIL-Lite supports both lossy and lossless JPEG compression
algorithms.

JPEG lossless The JPEG lossless algorithm compresses images without any
loss of information. Typically, the algorithm compresses images
by a factor of 2:1, although a factor of 4:1 can sometimes be
achieved. The JPEG lossless algorithm can compress 8- or
16-bit buffers with 1 or 3 bands.

JPEG lossy The JPEG lossy algorithm compresses images by a variable
factor but introduces some loss of information. The higher the
compression factor, the more the compression, but the lower the
image quality. The JPEG lossy algorithm can compress 8-bit
buffers with 1 or 3 bands. To be compatible with most
image-viewing software, MIL-Lite allows you to store
compressed color images in YUV format.

Interlaced JPEG MIL-Lite can perform a JPEG compression such that the image
data is stored in separate fields. This is referred to as an
interlaced JPEG compression. Unless otherwise stated,
everything that applies to a JPEG compression also applies to
an interlaced JPEG compression.

Control options MIL-Lite allows you to control certain aspects of a compression.
For example, you can use your own compression tables,
although the default tables are suitable for most applications.

General steps 141

General steps

Compression To compress an image:

1. Allocate a buffer in which to hold the compressed image.
Use MbufAlloc...(), allocating the buffer with an
M_COMPRESS+CompressionType attribute.

❖ Compressed buffers that are created using the
MbufCreate...() functions should not be used as the
destination buffer of a MIL-Lite function. If a buffer with
an M_COMPRESS specifier is used as a source buffer for
an operation, the data will be decompressed depending
on the attributes of the destination buffer.

2. If necessary, change the control settings of the buffer, using
MbufControl().

For example, for a JPEG lossy compression, you might want
to change the quantization factor (M_Q_FACTOR), which is
one of the factors that determine the amount of
compression. The default value of the quantization factor is
50; setting a lower value will produce marginal
improvement in image quality and will result in a larger
file size; setting a higher value will produce a smaller file,
and therefore a poorer quality image.

3. If the image to compress is stored in a buffer, use
MbufCopy() to compress it into the buffer allocated in
step 1. If it is stored in a file, use MbufImport(). Note that,
if you want the compressed image stored on file rather than
in a buffer, use MbufExport() instead of MbufCopy(). In this
case, there is no need to allocate a destination buffer.

You can also automatically compress your grabbed images.
To do so, use MdigGrab() with a destination buffer that has
an M_GRAB+M_COMPRESS+CompressionType attribute.

❖ Compression operations are optimized when the
uncompressed source buffer and the compressed destination
buffer are in the same format. Typically, buffers in YUV16
format produce the best compromise for quality and speed.

142 Chapter 9: JPEG compression

Decompression To decompress an image, use MbufCopy(), MbufImport(), or
MbufExport(), depending on where the source image is stored
(in a buffer or on file) and where you want results written (to a
buffer or file).

Before the decompression, you should not change any control
settings in the source image; the same controls must be used
for decompression, otherwise the image data will be lost.

❖ Decompression operations are optimized when the
compressed source and uncompressed destination buffers are
in the same format. Typically, buffers in YUV16 format
produce the best compromise for quality and speed.

❖ Decompressing a JPEG buffer into a YUV16 packed (YUYV)
buffer might accelerate transfer to the display.

Sequences When compressing sequences, you can use
MbufImportSequence() to import a sequence of images from an
audio video interleave (AVI) file into separate compressed
buffers. You can use MbufExportSequence() to export a
sequence of compressed image buffers to an AVI file.

Multi-band buffers,
color formats, and
control settings - JPEG

When you allocate a multi-band buffer for a JPEG lossy
compression, you can specify that the compressed image be
stored in an RGB or YUV format. YUV is convenient because
most image-viewing software support compressed color images
in YUV16 format.

If you are performing a JPEG lossy compression on a YUV
image, you can use the xx_LUMINANCE and xx_CHROMINANCE
control types to control the Y band and the U and V bands,
respectively. The control types without these suffixes control all
bands. See the MIL-Lite Command Reference for the list of
YUV-specific control types.

When the specified compressed buffer format differs from that
of the source image, MIL-Lite will internally convert the source
image to the specified format before performing the
compression.

Controlling a JPEG compression 143

Application-specific
markers

During a compression, MIL-Lite adds some application-specific
markers to the resulting image. Most other packages will ignore
these markers and therefore be able to decompress the file.
MIL-Lite itself ignores unrecognized markers when it
decompresses files.

Controlling a JPEG compression

This section provides a brief overview of the JPEG lossless and
lossy algorithms and of the controls you have over these
algorithms. In general, you should only change these controls
if you are familiar with the algorithm you are using. For
detailed information about the JPEG lossless and lossy
algorithms, see Information technology -- Digital compression
and coding of continuous-tone still images: Requirements and
guidelines, which is available from the International Standards
Organization (www.iso.ch). The section, Improving results,
summarizes techniques to use to improve compression
operations.

JPEG lossless

The JPEG lossless algorithm is basically a two-step process.
First, predictive coding is performed on the image. Then, the
result is Huffman encoded.

Predictive coding Predictive coding is based on the fact that adjacent pixels in an
image generally have similar values. Therefore, the value of a
pixel can be “predicted” from the values of its neighbor(s). The
difference between the original value of the pixel and the
predicted value requires fewer bits to store than the original
pixel value.

144 Chapter 9: JPEG compression

MIL-Lite supports three types of predictive coding: predictor
#0 (no predictor), predictor #1 (the “pixel-to-the-left” predictor),
and predictor #2 (the “pixel-above” predictor). By default,
MIL-Lite uses the pixel-to-the-left to predict values, which is
suitable for most images. In some applications, you might
prefer to use the pixel-above predictor. You can also specify no
predictor (predictor #0), but note that in this case, the values
after predictive coding will be the same as the original values.
This predictor can be useful if you have developed your own
algorithm to take the place of predictive coding and only need
your images Huffman encoded. Note that you must implement
your own algorithm to use one of the other “predictors”
supported by the JPEG lossless algorithm. You can specify the
predictor with the MbufControl() M_PREDICTOR control type.

Huffman encoding After an image has been predictive coded, Huffman encoding
assigns a variable-length “code word” to each value. This code
is based on the number of bits by which adjacent values differ.
Values are assigned code words according to a DC Huffman
table. You can use the default DC Huffman table or you can
create your own table. If you want to use your own table, refer
to the section Working with tables.

JPEG lossy

The JPEG lossy algorithm is outlined below. First the source
image must be in the correct format before it can be compressed.
Although the JPEG algorithm requires signed source data, the
algorithm accepts both signed and unsigned data. Initially the
algorithm internally treats all data as unsigned. Then a
computational shift is performed to set all the values to signed.

After the computational shift, a color conversion is performed
if the source and destination buffers are in different formats,
for example an RGB source buffer and a YUV destination
buffer. Note that conversion to YUV introduces some loss.

Controlling a JPEG compression 145

Afterwards, each 8x8 block of the image is represented in its
frequency domain through a discrete cosine transform,
resulting in 1 DC and 63 AC values. Each block is then
quantized and Huffman encoded.

Quantization divides each of the 64 values in a block by a
specified value, according to a quantization table. After each
block is quantized, Huffman encoding assigns a variable-length
“code word” to each value. Each DC value in a block is assigned
a code word according to a DC Huffman table. The AC values
are assigned a code word according to an AC Huffman table.
You can control a JPEG lossy compression by using your own
quantization and/or Huffman tables.

Restart markers
When an image is compressed, MIL-Lite adds restart markers
to the bit-stream of the compressed image. A restart marker is
a special code that signifies that the encoded bit-stream has
been padded to the next byte boundary before the encoding
process was restarted. Restart markers can be useful if you are
transmitting the compressed image over a medium that is
susceptible to errors. If an error does occur and there are no
restart markers, the error will propagate and affect subsequent
data. However, if there are restart markers, the error will be
confined to the data between markers.

By default, MIL-Lite places restart markers after a certain
number of rows of data have been encoded (for lossless
compressions) or after a certain number of 8x8 blocks of data
have been encoded (for lossy compressions). If necessary, you
can use the MbufControl() M_RESTART_INTERVAL control type
to change the number of rows or blocks between restart
markers.

Source
Image

Preparation of
source image

Compressed
ImageQuantization

Huffman
encoding

Table
Quantization

factor
Table

DCT

146 Chapter 9: JPEG compression

❖ For a lossy compression with a high compression ratio, too
many restart markers can significantly increase the size of
the compressed image. In this case, you might want to
increase the number of blocks between restart markers,
especially if you are not transmitting the image over a noisy
medium. In fact, if you are sure that the transmission
medium is not noisy, you might want to set the restart
interval to 0, that is, not use restart markers. This will
increase the compression ratio, as well as reduce the time
required to decompress the image.

Improving results

If the defaults do not meet your application requirements, you
can try to improve your compression ratio using the following
techniques. We recommend trying these techniques in the order
they appear.

❖ Regardless of the type of your compression operation, you
should first remove extraneous noise from the image (if
possible) using MIL-Lite processing functions.

For JPEG lossy compression:

■ Allocate a YUV buffer for compression.

■ Increase the quantization factor with the MbufControl()
M_Q_FACTOR control type.

■ Decrease the restart interval.

■ Change the quantization table. See the section, Working with
tables.

■ Change the Huffman table. See the section, Working with
tables.

For JPEG lossless compression:

■ Try the other supported predictors with the MbufControl()
M_PREDICTOR control type.

■ Decrease the restart interval.

Working with tables 147

Working with tables

In some applications, the default quantization or Huffman
tables might not be suitable. MIL-Lite allows you to create your
own. You can inquire the default table to help you determine
appropriate values. You might have to select values by trial and
error to determine the best ones for your application.

❖ For JPEG compression, quantization divides values.

Whether you are inquiring the default tables or customizing
your own, you must allocate arrays that are large enough to
contain the data. The table below lists the tables that you can
manipulate and their required size for each compression type.

Inquiring values in default tables

Inquiring the default values of a table is useful to determine
values for your custom tables. The steps below outline this
procedure.

1. First, inquire the MIL identifier of the default table using
MbufInquire(). Then, inquire the size of the table using the
same function.

2. Allocate a user array of the appropriate size for storing the
default table values.

3. Get the values from the inquired table in Step 1 into the
user array using MbufGet().

❖ You can only inquire all values in the table. You cannot
inquire specific table entries.

Compression
type

Table type Buffer type, size, and attribute

JPEG lossless DC Huffman 1-dimensional, 8+M_UNSIGNED, 28 entries, M_ARRAY

JPEG lossy DC Huffman 1-dimensional, 8+M_UNSIGNED, 28 entries, M_ARRAY

AC Huffman 1-dimensional, 8+M_UNSIGNED, 178 entries, M_ARRAY

Quantization 2-dimensional, 8+M_UNSIGNED, 8 x 8 entries, M_ARRAY

148 Chapter 9: JPEG compression

Using your own table
To use your own table:

1. Allocate a buffer with an M_ARRAY attribute and of the
required data type specified in the table earlier in this
section.

2. Transfer the user array containing the custom table values
to the array buffer, using MbufPut1d() or MbufPut2d(),
depending on the type of table.

3. Associate the M_ARRAY buffer to the required
M_COMPRESS image buffer, using the MbufControl()
control types specific to your table. Specifying these control
types as-is, or combined with M_ALL_BAND, controls all
bands.

For JPEG lossy compressions of YUV images, use the
xx_LUMINANCE and xx_CHROMINANCE control types. The
control types without these suffixes control all bands.

❖ If you set the M_Q_FACTOR control type after specifying a
custom table, the custom table will be scaled.

Chapter 10: Data
manipulation with multiple
systems

150 Chapter 10: Data manipulation with multiple systems

Data manipulation with multiple systems

To use multiple Matrox imaging boards, you have to allocate a
MIL system for each board.

Processing To perform a processing operation, your source and destination
buffers can be on different systems; MIL will transparently
copy buffers to the most efficient of these system, if necessary.

Exchanging data To exchange data between systems, you can physically copy the
data from one system to another. The copy is always performed
by the most suitable system. If both systems are of the same
type, the copy is always performed by the destination system.

Instead of performing a physical copy using MbufCopy(), you
can allocate a buffer on one system and use MbufCreate...() to
access this buffer from another system. MbufCreate...() creates
a buffer that maps to allocated memory (for example, on the
Host or any MIL system); no memory is actually allocated to
this newly created buffer.

The second method can be used, for example, to update a buffer
(or part of it) with data grabbed from different systems. Note
that after writing to the created buffer, you should notify the
real buffer that its contents have been changed, by calling
MbufControl() with M_MODIFIED. See Chapter 3: Specifying
and managing your data buffers for more information about
creating data buffers.

Grab and display To grab, the digitizer and the destination buffer must be
allocated on the same MIL system. Similarly, to display a buffer,
the display and the buffer must be allocated on the same MIL
system.

Systems without an on-board display section use the VGA for
display. Therefore, under Windows, such systems will
automatically display together on the same screen.

Chapter 11: Using MIL with
multi-processing and under
multi-thread systems

This chapter describes how MIL handles multi-processing
and multi-threading.

152 Chapter 11: Using MIL with multi-processing and under multi-thread systems

Multi-processing

Multi-processing is the ability to execute various processes
(applications) simultaneously.

MIL applications are autonomous processes (or executables)
designed to execute a complete operation or series of operations.
Therefore, they can profit from multi-processing by executing
independently, without interference from each other.

In general, when multiple processes are running, no sharing of
systems is permitted, except for the Host and VGA. Some
particular systems, such as Matrox Genesis, can also be shared.

Systems with
multi-processing

Systems that support multiple processes have on-board
resources (like processors) that can be shared by different
processes. However, if many processes are running at the same
time, these processes have to share the available processing
time and will not be able to share data.

Systems without
multi-processing

Not all systems support multi-processing. For example, a
simple frame grabber with only acquisition capability (like the
Matrox Meteor-II) cannot ensure either the response time to a
command or the independence of a process necessary for
multi-processing. Therefore, on such systems MIL will refuse
to allocate the system if it is already being used by another
process. To use a non-multi-processing system within a
multi-processing environment, all processes that need to
communicate with the system must do so by sending their
requests through a single dedicated process.

Multi-threading 153

Multi-threading

MIL also supports multi-threading. Multi-threading is the
ability to perform multiple operations simultaneously in the
same process. This is done by creating different threads
(execution queues) to ensure sequential execution of operations
within the same thread, while allowing simultaneous yet
independent execution of other operations in other threads.

Threads within a process share the same data. Therefore, they
can communicate and exchange data such as MIL identifiers.

Multi-threading is most appropriate for applications where
independent tasks can be done simultaneously but need to
share data or to be controlled and synchronized within a main
task.

Speed considerations Multi-threading does not always result in an increase of speed
and efficiency. Threads running simultaneously share the same
system resources (such as memory) and generally run on the
same CPU. This sharing can, in some cases, slow the process.
For example, when using a system with multiple CPUs under
Windows NT, the threads generally run on separate CPUs and
provide more processing power. However, since they share the
same memory, operations that are I/O intensive and require
only simple processing might not be accelerated.

Alternatives Most applications do not require the use of multiple threads
since there are other ways of multi-tasking. Mechanisms such
as asynchronous grab and call-back functions can be used
(see MdigControl() and MdigHookFunction()). Applications
resolved by alternative means are often simpler to implement
and easier to maintain than multi-threaded applications.

154 Chapter 11: Using MIL with multi-processing and under multi-thread systems

MIL and multi-threading
When your application contains several distinct parts that you
want to run in parallel, it is often easier to design it so that each
part is controlled by a separate thread (or task). For example,
if you have two independent processing tasks that can be
performed in parallel, it is often easier to have each controlled
by a separate thread.

Thread execution Under multi-thread operating systems, you can create as many
threads as you require. The MIL commands in any thread are
executed as follows:

■ If the target processor is the Host CPU, processing in each
thread is determined by the operating system.

■ If the target processor is an on-board processor of a system
that supports multi-threading (like the Matrox Genesis),
MIL automatically creates, and eventually terminates, an
on-board thread for each Host thread that sends commands
to the board.

MIL application context For each new Host thread sending MIL commands, MIL creates
a new default MIL application context and initializes it to the
state of the main MIL application (the first application
allocated with MappAlloc()). Its purpose is to handle the context
of the new thread, such as error reporting.

You can have the thread’s application initialized to its initial
state by allocating a new application using MappAlloc(); note
that this must be the first call to MIL in the thread.

Synchronization Thread synchronization is generally done by the Host
synchronization services (such as Windows NT/2000 and 98
event objects). However, when using a system with an on-board
processor, this processor is not synchronized with the Host.

This means that Host threads continue execution without
waiting for the execution of the on-board commands to
complete. In most cases, this is desirable to make the Host
thread available for other tasks. However, for operations that
necessitate the completion of a previous command(s) in order

Multi-threading 155

to return valid results (for example, MbufGet() after an
MdigGrab()), MIL automatically synchronizes the threads to
force the Host to wait for completion of the earlier command(s).

Explicit synchronization might be necessary if commands
sharing a common resource or system might conflict with each
other. For example, two threads sharing the same image buffer
MIL identifier might each try to clear the buffer to a different
value. If the threads are not synchronized, these commands
might execute at the same time and the buffer could be cleared
to either value or even to a combination of
the two values. Use the MIL synchronization command,
MappControlThread(), to control the flow of such commands.

Thread control Windows NT/2000 and 98 systems are both multi-process and
multi-thread. They provide various thread control services,
including events (used to synchronize threads).

The MIL MappControlThread() command serves as a link
between MIL and the operating system. It controls and
coordinates both MIL threads and MIL events. It can create
and delete a MIL thread, set a thread as the current active
thread, set its processing mode, determine its current state, and
synchronize its processing by forcing a "wait" state. It can exert
similar controls on MIL events. MIL events can be used in
addition to, or instead of, the operating system’s events.

Error reporting Some functions in MIL are asynchronous, that is, they queue
their command to the hardware and then immediately return
control to the Host. For this reason, errors are only reported
when the function is executed.

The most common way to check for errors is to use the
MappGetError() function. In multi-thread environments, an
MappGetError() call returns the error of the current thread or,
if none, checks for errors in the other threads running MIL. To
return only errors in the current thread, add
M_THREAD_CURRENT to the ErrorType parameter
(M_CURRENT+M_THREAD_CURRENT).

156 Chapter 11: Using MIL with multi-processing and under multi-thread systems

An example of using multiple threads or systems

Multiple threads The following example illustrates how multiple threads can be
used to perform processing. It also illustrates how to
synchronize multiple threads, using events.

���(KNG�PCOG��OVJTGCF�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�WUG�FKHHGTGPV�VJTGCFU�CPF�U[PEJTQPK\G�
��������������VJGO�YKVJ�/+.��+V�ETGCVGU���FTCYKPI�VJTGCFU�VJCV�CTG�WUGF
��������������VQ�YQTM�KP���FKHHGTGPV�TGIKQPU�QH�C�FKURNC[�DWHHGT�
�������6JTGCF�WUCIG�
����������6JG�OCKP�VJTGCF�UVCTVU�C�RTQEGUUKPI�VJTGCF�KP�GCEJ�QH�VJG���FKHHGTGPV
����������SWCTVGTU�QH�C�FKURNC[�DWHHGT��6JG�OCKP�VJTGCF�VJGP�YCKVU�HQT�C�MG[�VQ
����������DG�RTGUUGF�VQ�UVQR�VJGO�
����������6JG�VQR�NGHV�CPF�DQVVQO�NGHV�VJTGCFU�YQTM�KP�C�NQQR��CU�HQNNQYU��VJG
����������VQR�NGHV�VJTGCF�FTCYU�C�TGEVCPING�KP�KVU�DWHHGT�
KP�C�UK\G
����������FKHHGTGPV�HTQO�VJG�RTGXKQWU�TGEVCPING���VJGP�UGPFU�CP�GXGPV�VQ�VJG�
����������DQVVQO�NGHV�VJTGCF��6JG�DQVVQO�NGHV�VJTGCF�YCKVU�HQT�VJG�GXGPV�HTQO�
����������VJG�VQR�NGHV�VJTGCF��EQRKGU�VJG�EQPVGPVU�QH�VJG�VQR�NGHV�DWHHGT�KPVQ�
����������KVU�DWHHGT��FTCYU�C�EKTENG�KP�VJG�TGEVCPING��VJGP�UGPFU�CP�GXGPV�VQ�
����������VJG�VQR�NGHV�VJTGCF��9JGP�VJG�VQR�NGHV�VJTGCF�TGEGKXGU�VJG�GXGPV��VJG�
����������NQQR�EQPVKPWGU�
����������6JG�VQR�TKIJV�CPF�DQVVQO�TKIJV�VJTGCFU�YQTM�GZCEVN[�VJG�UCOG�YC[�CU�VJG
����������VQR�NGHV�CPF�DQVVQO�NGHV�VJTGCFU�
��
��������0QVG�VJCV�VJG�VQR�CPF�DQVVQO�VJTGCFU�
QH�GCEJ�JCNH��EQWNF�DG�UGV�VQ�FQ
��������UQOGVJKPI�GNUG�YJKNG�YCKVKPI�HQT�GCEJ�QVJGT��
���

���JGCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��EQPKQ�J
�KPENWFG��RTQEGUU�J
�KPENWFG��YKPFQYU�J
�KPENWFG��OKN�J

���NQECN�FGHKPGU���
�FGHKPG�+/#)'A(+.'��������������DKTF�OKO�
�FGHKPG�+/#)'A9+&6*���������������
�FGHKPG�+/#)'A*'+)*6��������������
�FGHKPG�&4#9A4#&+75A/#:����������
�FGHKPG�&4#9A%'06'4A215:���������
�FGHKPG�&4#9A%'06'4A215;���������
�FGHKPG�564+0)A.'0)*6A/#:��������
�FGHKPG�564+0)A215A:�������������
�FGHKPG�564+0)A215A;��������������
�FGHKPG�564+0)A612����������������
�FGHKPG�564+0)A$1661/�������������

���6JTGCF�HWPEVKQP�RTQVQV[RGU���
WPUKIPGF�NQPI�/(6;2'�6QR6JTGCF
XQKF��62CTCO��
WPUKIPGF�NQPI�/(6;2'�$QV.GHV6JTGCF
XQKF��62CTCO��
WPUKIPGF�NQPI�/(6;2'�$QV4KIJV6JTGCF
XQKF��62CTCO��

���
EQPV�����

Multi-threading 157

���6JTGCF�RCTCOCVGTU�UVTWEVWTG���
V[RGFGH�UVTWEV
���]
���/+.A+&�5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�
���/+.A+&�'XGPV'PF$QV+F�
���NQPI����0WODGT1H+VGT2VT�
���NQPI����%QO8CT2VT�
���_�6*4'#&A2#4#/�

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
���]�
���/+.A+&�/KN#RRNKECVKQP������������#RRNKECVKQP�KFGPVKHKGT����������������������
����������/KN5[UVGO�����������������5[UVGO�KFGPVKHKGT���������������������������
����������/KN&KURNC[����������������&KURNC[�KFGPVKHKGT��������������������������
����������/KN+OCIG������������������+OCIG�DWHHGT�KFGPVKHKGTU��������������������
����������/KN%JKNF������������������%JKNF�DWHHGT�KFGPVKHKGTU��������������������
����������/KN6QR.GHV+OCIG�����������6QR�NGHV�EJKNF�KOCIG������������������������
����������/KN$QV.GHV+OCIG�����������$QVVQO�NGHV�EJKNF�KOCIG���������������������
����������/KN6QR4KIJV+OCIG����������6QR�TKIJV�EJKNF�KOCIG�����������������������
����������/KN$QV4KIJV+OCIG����������$QVVQO�TKIJV�EJKNF�KOCIG��������������������
����������'XGPV5GPF6QR.GHV����������'XGPV�UGPF�D[�VQR�NGHV�VJTGCF���������������
����������'XGPV5GPF6QR4KIJV���������'XGPV�UGPF�D[�VQR�TKIJV�VJTGCF��������������
����������'XGPV9CKV6QR.GHV����������'XGPV�YCKVGF�QP�D[�VQR�NGHV�VJTGCF����������
����������'XGPV9CKV6QR4KIJV���������'XGPV�YCKVGF�QP�D[�VQR�TKIJV�VJTGCF���������
����������'XGPV'PF6QR.GHV�����������'XGPV�WUGF�VQ�GZKV�VQR�NGHV�VJTGCF����������
����������'XGPV'PF$QV.GHV�����������'XGPV�WUGF�VQ�GZKV�DQVVQO�NGHV�VJTGCF�������
����������'XGPV'PF6QR4KIJV����������'XGPV�WUGF�VQ�GZKV�VQR�TKIJV�VJTGCF���������
����������'XGPV'PF$QV4KIJV����������'XGPV�WUGF�VQ�GZKV�DQVVQO�TKIJV�VJTGCF������
���NQPI���0WODGT1H6QR.GHV�����.�����0WODGT�QH�VQR�NGHV�VJTGCFU�KVGTCVKQPU�������
����������0WODGT1H$QV.GHV�����.�����0WODGT�QH�DQVVQO�NGHV�VJTGCFU�KVGTCVKQPU����
����������0WODGT1H6QR4KIJV����.�����0WODGT�QH�VQR�TKIJV�VJTGCFU�KVGTCVKQPU������
����������0WODGT1H$QV4KIJV����.�����0WODGT�QH�DQVVQO�TKIJV�VJTGCFU�KVGTCVKQPU���
����������%QO8CT.GHV�����.����������%QOOWPKECVKQP�XCTKCDNG�HQT�NGHV�VJTGCF������
����������%QO8CT4KIJV����.����������%QOOWPKECVKQP�XCTKCDNGHQT�TKIJV�VJTGCF������
���6*4'#&A2#4#/�62CT6QR.GHV���������2CTCOGVGTU�RCUUGF�VQ�VQR�NGHV�VJTGCF��������
����������������62CT$QV.GHV���������2CTCOGVGTU�RCUUGF�VQ�DQVVQO�NGHV�VJTGCF�����
����������������62CT6QR4KIJV��������2CTCOGVGTU�RCUUGF�VQ�VQR�TKIJV�VJTGCF�������
����������������62CT$QV4KIJV��������2CTCOGVGTU�RCUUGF�VQ�DQVVQO�TKIJV�VJTGCF����
���*#0&.'�6JTGCF*CPFNG=�?�����������6JTGCF�JCPFNGU������������������������������
���&914&��6JTGCF+F=�?���������������6JTGCF�+FU����������������������������������
�
���
EQPV�����

158 Chapter 11: Using MIL with multi-processing and under multi-thread systems

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
���������������������/KN&KURNC[��/A07..���/KN+OCIG��

�����#NNQECVG�EJKNF�DWHHGTU����
���/DWH%JKNF�F
/KN+OCIG��������+/#)'A9+&6*����+/#)'A*'+)*6�����/KN%JKNF��
���/DWH%JKNF�F
/KN%JKNF��������+/#)'A9+&6*����+/#)'A9+&6*������/KN6QR.GHV+OCIG��
���/DWH%JKNF�F
/KN%JKNF��+/#)'A9+&6*������+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN6QR4KIJV+OCIG��
���/DWH%JKNF�F
/KN%JKNF�����+/#)'A*'+)*6��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN$QV.GHV+OCIG��
���/DWH%JKNF�F
/KN%JKNF��+/#)'A9+&6*��+/#)'A*'+)*6��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN$QV4KIJV+OCIG��
���/FKUR5GNGEV
/KN&KURNC[�/KN%JKNF��

�����#NNQECVG�U[PEJTQPK\CVKQP�GXGPVU����
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV5GPF6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV5GPF6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV9CKV6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV9CKV6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF$QV.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF$QV4KIJV��

�����+PKVKCNK\G�UQWTEG�DWHHGTU����
���/DWH.QCF
+/#)'A(+.'�/KN6QR.GHV+OCIG��
���/DWH.QCF
+/#)'A(+.'�/KN6QR4KIJV+OCIG��

�����+PVKVCNK\G�VJTGCFU�RCTCOGVGT�UVTWEVWTGU����
���62CT6QR.GHV�5TE+OCIG+F���������/KN6QR.GHV+OCIG�
���62CT6QR.GHV�&UV+OCIG+F���������/KN6QR.GHV+OCIG�
���62CT6QR.GHV�'XGPV5GPF+F��������'XGPV5GPF6QR.GHV�
���62CT6QR.GHV�'XGPV9CKV+F��������'XGPV9CKV6QR.GHV�
���62CT6QR.GHV�'XGPV'PF+F���������'XGPV'PF6QR.GHV�
���62CT6QR.GHV�'XGPV'PF$QV+F������'XGPV'PF$QV.GHV�
���62CT6QR.GHV�0WODGT1H+VGT2VT�����0WODGT1H6QR.GHV�
���62CT6QR.GHV�%QO8CT2VT�����������%QO8CT.GHV�

���62CT$QV.GHV�5TE+OCIG+F���������/KN6QR.GHV+OCIG�
���62CT$QV.GHV�&UV+OCIG+F���������/KN$QV.GHV+OCIG�
���62CT$QV.GHV�'XGPV5GPF+F��������'XGPV9CKV6QR.GHV�
���62CT$QV.GHV�'XGPV9CKV+F��������'XGPV5GPF6QR.GHV�
���62CT$QV.GHV�'XGPV'PF+F���������'XGPV'PF$QV.GHV�
���62CT$QV.GHV�'XGPV'PF$QV+F������/A07..�
���62CT$QV.GHV�0WODGT1H+VGT2VT�����0WODGT1H$QV.GHV�
���62CT$QV.GHV�%QO8CT2VT�����������%QO8CT.GHV�

���62CT6QR4KIJV�5TE+OCIG+F��������/KN6QR4KIJV+OCIG�
���62CT6QR4KIJV�&UV+OCIG+F��������/KN6QR4KIJV+OCIG�
���62CT6QR4KIJV�'XGPV5GPF+F�������'XGPV5GPF6QR4KIJV�
���62CT6QR4KIJV�'XGPV9CKV+F�������'XGPV9CKV6QR4KIJV�
���62CT6QR4KIJV�'XGPV'PF+F��������'XGPV'PF6QR4KIJV�
���62CT6QR4KIJV�'XGPV'PF$QV+F�����'XGPV'PF$QV4KIJV�
���62CT6QR4KIJV�0WODGT1H+VGT2VT����0WODGT1H6QR4KIJV�
���62CT6QR4KIJV�%QO8CT2VT����������%QO8CT4KIJV�
���
EQPV�����

Multi-threading 159

���62CT$QV4KIJV�5TE+OCIG+F��������/KN6QR4KIJV+OCIG�
���62CT$QV4KIJV�&UV+OCIG+F��������/KN$QV4KIJV+OCIG�
���62CT$QV4KIJV�'XGPV5GPF+F�������'XGPV9CKV6QR4KIJV�
���62CT$QV4KIJV�'XGPV9CKV+F�������'XGPV5GPF6QR4KIJV�
���62CT$QV4KIJV�'XGPV'PF+F��������'XGPV'PF$QV4KIJV�
���62CT$QV4KIJV�'XGPV'PF$QV+F�����/A07..�
���62CT$QV4KIJV�0WODGT1H+VGT2VT����0WODGT1H$QV4KIJV�
���62CT$QV4KIJV�%QO8CT2VT����������%QO8CT4KIJV�
���
����5VCTV�TQVCVG�CPF�GFIG�FGVGEV�VJTGCFU����
���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���6QR6JTGCF�
��62CT6QR.GHV����.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���$QV.GHV6JTGCF�
��62CT$QV.GHV����.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���6QR6JTGCF�
��62CT6QR4KIJV���.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���$QV4KIJV6JTGCF�
��62CT$QV4KIJV���.���
6JTGCF+F=�?���
�����
�����5GPF�GXGPVU�VQ�VTKIIGT�QRGTCVKQP�QH�VQR�NGHV�CPF�VQR�TKIJV�VJTGCFU����
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR.GHV��/A'8'06A5'6��/A5+)0#.'&�/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR4KIJV�/A'8'06A5'6��/A5+)0#.'&�/A07..��
��
�����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
���RTKPVH
�&TCYKPI�FQPG�KP�C�NQQR�WUKPI�HQWT�VJTGCFU�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��
��
�����/CMG�CNN�VJTGCFU�GZKV����
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV���/A'8'06A5'6��/A5+)0#.'&��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV��/A'8'06A5'6��/A5+)0#.'&��/A07..��
��
�����9CKV�DGHQTG�HTGGKPI�/+.�QDLGEVU�VJCV�CNN�VJTGCFU�CTG�HKPKUJGF����
���YJKNG�

/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV���/A'8'06A56#6'��/A&'(#7.6�
�����������������������������/A07..�����/A5+)0#.'&��^^
����������
/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV��/A'8'06A56#6'��/A&'(#7.6�
�����������������������������/A07..�����/A5+)0#.'&����
���RTKPVH
�6QR�NGHV�KVGTCVKQPU�FQPG��������NF�>P���0WODGT1H6QR.GHV��
���RTKPVH
�$QVVQO�NGHV�KVGTCVKQPU�FQPG�����NF�>P���0WODGT1H$QV.GHV��
���RTKPVH
�6QR�TKIJV�KVGTCVKQPU�FQPG�������NF�>P���0WODGT1H6QR4KIJV��
���RTKPVH
�$QVVQO�TKIJV�KVGTCVKQPU�FQPG����NF�>P���0WODGT1H$QV4KIJV��
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��
���
EQPV�����

160 Chapter 11: Using MIL with multi-processing and under multi-thread systems

�����(TGG�DWHHGTU����
���/CRR%QPVTQN6JTGCF
'XGPV5GPF6QR.GHV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV5GPF6QR4KIJV��/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR.GHV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR4KIJV��/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV����/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF$QV.GHV����/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF$QV4KIJV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/DWH(TGG
/KN6QR.GHV+OCIG��
���/DWH(TGG
/KN6QR4KIJV+OCIG��
���/DWH(TGG
/KN$QV.GHV+OCIG��
���/DWH(TGG
/KN$QV4KIJV+OCIG��
���/DWH(TGG
/KN%JKNF��
������4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
���_

���6QR�NGHV�CPF�VQR�TKIJV�HWPEVKQPU����
���������������������������������������
WPUKIPGF�NQPI�/(6;2'�6QR6JTGCF
XQKF��62CTCO�
���]
���/+.A+&�5TE+OCIG+F������

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F������

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F������

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���/+.A+&�'XGPV'PF$QV+F���

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF$QV+F�
���NQPI���4CFKWU8CT2VT����

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT�
���EJCT���6GZV=564+0)A.'0)*6A/#:?���564+0)A612�
���NQPI���'ZKV���
�
���YJKNG�
�'ZKV�
������]
��������9CKV�HQT�GXGPV�VQ�RTQEGUU����
������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
��������/QFKH[�EQOOWPKECVKQP�XCTKCDNG�CPF�TGNQCF�KOCIG�KH�PGEGUUCT[����
������KH�
�4CFKWU8CT2VT���&4#9A4#&+75A/#:�
���������]
����������4CFKWU8CT2VT�
��������
���������_
������GNUG����
���������]
����������4CFKWU8CT2VT��������
���������/DWH.QCF
+/#)'A(+.'��&UV+OCIG+F��
���������_

��������2TKPV�PWODGT�QH�KVGTCVKQPU�CPF�FTCY����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
�������
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC%QNQT
/A&'(#7.6���ZHH��
������/ITC6GZV
/A&'(#7.6��5TE+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��
������/ITC4GEV(KNN
/A&'(#7.6��&UV+OCIG+F��&4#9A%'06'4A215:��4CFKWU8CT2VT�
�������������������&4#9A%'06'4A215;��4CFKWU8CT2VT�&4#9A%'06'4A215:
�4CFKWU8CT2VT�
�������������������&4#9A%'06'4A215;
�4CFKWU8CT2VT��
���
EQPV�����

Multi-threading 161

��������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
���������]
�����������/CMG�DQVVQO�VJTGCF�GZKV����
���������/CRR%QPVTQN6JTGCF
'XGPV'PF$QV+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��

�����������5GV�GZKV�NQQR�HNCI����
���������'ZKV���
���������_
��������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�FTCYKPI����
������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
������_
�
�����9CKV�DGHQTG�HTGGKPI�/+.�QDLGEVU�VJCV�CNN�VJTGCFU�CTG�HKPKUJGF����
���YJKNG�
/CRR%QPVTQN6JTGCF
'XGPV'PF$QV+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
�������
������
�����/CMG�UWTG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
���/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
���TGVWTP
�.��
���_

���$QVVQO�NGHV�HWPEVKQPU����
����������������������������
WPUKIPGF�NQPI�/(6;2'�$QV.GHV6JTGCF
XQKF��62CTCO�
���]
���/+.A+&�5TE+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���NQPI���4CFKWU8CT2VT���

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT�
���EJCT���6GZV=564+0)A.'0)*6A/#:?���564+0)A$1661/�
���NQPI���'ZKV���
���
���YJKNG�
�'ZKV�
������]
������NQPI�K�
��������9CKV�HQT�GXGPV�VQ�RTQEGUU����
������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
��������+PETGOGPV�PWODGT�QH�KVGTCVKQPU����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.�
��������%QR[�VJG�VQR�KOCIG����
������/DWH%QR[
5TE+OCIG+F�&UV+OCIG+F��
��������2TKPV�KVGTCVKQP�EQWPV�CPF�FTCY����
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC%QNQT
/A&'(#7.6���Z((��
������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��
������/ITC%QNQT
/A&'(#7.6���Z����
������/ITC#TE(KNN
/A&'(#7.6��&UV+OCIG+F��&4#9A%'06'4A215:��&4#9A%'06'4A215;�
�������������������4CFKWU8CT2VT���4CFKWU8CT2VT����������
���
���
EQPV�����

162 Chapter 11: Using MIL with multi-processing and under multi-thread systems

���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
�������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
���������'ZKV���
���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�FTCYKPI����
�������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
�������_
�
������/CMG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
����/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
����TGVWTP
�.��
����_

���$QVVQO�TKIJV�HWPEVKQP����
����������������������������
WPUKIPGF�NQPI�/(6;2'�$QV4KIJV6JTGCF
XQKF��62CTCO�
���]
���/+.A+&�5TE+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���NQPI���4CFKWU8CT2VT���

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT�
���EJCT���6GZV=564+0)A.'0)*6A/#:?���564+0)A$1661/�
���NQPI���'ZKV���
���
���YJKNG�
�'ZKV�
�������]
���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
�������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
���������+PETGOGPV�PWODGT�QH�KVGTCVKQPU����
�������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.�
������
���������%QR[�VJG�VQR�KOCIG����
�������/DWH%QR[
5TE+OCIG+F�&UV+OCIG+F��
������
���������2TKPV�KVGTCVKQP�EQWPV�CPF�FTCY����
�������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
�������/ITC%QNQT
/A&'(#7.6���Z((��
�������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��
�������/ITC%QNQT
/A&'(#7.6���Z����
�������/ITC#TE(KNN
/A&'(#7.6��&UV+OCIG+F��&4#9A%'06'4A215:��&4#9A%'06'4A215;�
��������������������4CFKWU8CT2VT�����4CFKWU8CT2VT������������
���
���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
�������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
�����������������������������/A07..�����/A5+)0#.'&�
���������'ZKV���
������
���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�FTCYKPI����
�������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
�������_
������
������/CMG�UWTG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
����/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
����TGVWTP
�.��
����_

Chapter 12: Using MIL with
Native Mode Functions

This chapter covers the use of Native Mode functions with
MIL.

164 Chapter 12: Using MIL with Native Mode Functions

Integrating native functions with MIL code

MIL allows you to mix board-specific code (from the native
library function set) with its own code. This is useful when you
need to access some board-specific functionality that is not
supported directly by the MIL function set or to optimize a
time-critical piece of code.

When programming in native mode through MIL, you use the
same board driver and programmer’s kit that are used by
regular native mode programmers. The only difference is the
need to use certain rules and commands to ensure proper
communication between MIL and the native functions. These
rules and commands allow you to enter and leave native mode
from MIL and access MIL for information, such as the object
native handle, concerning data objects on the target board.

Portability
You should note that applications containing native mode
functions are not portable to other present or future Matrox
platforms supported by MIL.

Signaling MIL about Native Mode use
MIL must be signaled when entering and leaving native mode
and when MIL objects have been modified while in native mode,
using MsysControl(). For buffer modification, MbufControl()
can also be used to signal MIL.

On entering native mode, MIL does not affect the current state
of either the board or the environment.

The M...Inquire() functions can be used to determine the buffer,
digitizer, or display native identifier (handle) required to use
the system’s native library.

On leaving native mode, MIL assumes that the board is in the
same state as when entering. Therefore, you must ensure that
you return the board to the proper state before returning
control to MIL. Inquiries about the board state must be made
using the board’s native library inquiry functions.

A native mode example 165

A native mode example

In this example, we use MIL mixed with Genesis native library
code to grab and warp an image.

Code

���(KNG�PCOG��OPCVIGP�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�WUG�)'0'5+5�PCVKXG�NKDTCT[�
��������������HWPEVKQP�ECNNU OKZGF�YKVJ�/+.�HWPEVKQP�ECNNU�
��

���IGPGTCN�KPENWFGU���
��KPENWFG��UVFKQ�J �
��KPENWFG��UVFNKD�J �
��KPENWFG��UVTKPI�J �
��KPENWFG��OKN�J
��KPENWFG��KOCRK�J

���1RGTCVKQP�EQPVTQN�FGHKPGU���
��FGHKPG�#..1%#6'����
��FGHKPG�241%'55�����
��FGHKPG�(4''��������

���0CVKXG�HWPEVKQPU�VQ�ITCD��CPF�YCTR�CP�KOCIG����
�XQKF�)TCD#PF9CTR
/+.A+&�/KN5[UVGO��/+.A+&�/KN&KURNC[��/+.A+&�/KN%COGTC��
������������������/+.A+&�/KN+OCIG��NQPI�1RGTCVKQP��

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
����������/KN%COGTC������������%COGTC�KFGPVKHKGT�����������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
���������������������/KN%COGTC���/KN+OCIG��
�
�����#NNQECVG�CPF�KPKVKCNK\G�YQTM�DWHHGTU����
���)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��#..1%#6'��
��������������������
�����2TKPV�C�OGUUCIG�QP�VJG�JQUV�UETGGP����
���RTKPVH
�0CVKXG�HWPEVKQP�ECNNGF�KP�C�NQQR���>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF������

���
��
EQPV����

166 Chapter 12: Using MIL with Native Mode Functions

������)TCD�CPF�YCTR�ITCDDGF�KOCIG�KP�C�NQQR���
����YJKNG�
�MDJKV
��
����]
��������)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��241%'55��
����_
������
������(TGG�YQTM�DWHHGTU���
����)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��(4''��

����/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN%COGTC�
��������������������/KN+OCIG��
_

���0CVKXG�HWPEVKQP����
����������������������
XQKF�)TCD#PF9CTR
/+.A+&�/KN5[UVGO��/+.A+&�/KN&KURNC[��/+.A+&�/KN%COGTC�
�����������������/+.A+&�/KN+OCIG��NQPI�1RGTCVKQP�
]
������9CTR�EQGHHKEKGPV�CPF�.76�+&�XCTKCDNGU�
������
MGRV�KP�UVCVKE�VQ�CXQKF�YCTR�EQGHHKEKGPV�ECNEWNCVKQP�CV�GCEJ�ECNN��
������
����UVCVKE�NQPI�0CVKXG9CTR$WH+F����������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR.WV:$WH+F������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR.WV;$WH+F������/A07..�
����UVCVKE�NQPI�0CVKXG)TCD$WH+F����������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR4GUWNV$WH+F����/A07..�
���
������+PSWKTG�WUGHWN�/+.�KPHQTOCVKQP����
����NQPI�5K\G:������/FKI+PSWKTG
/KN%COGTC��/A5+<'A:�����/A07..��
����NQPI�5K\G;������/FKI+PSWKTG
/KN%COGTC��/A5+<'A;�����/A07..��
����NQPI�5K\G$CPF���/FKI+PSWKTG
/KN%COGTC��/A5+<'A$#0&��/A07..��
���
������/KUEGNNCPGQWU�NQECN�XCTKCDNGU���
����FQWDNG�%QTPGT:���������
����FQWDNG�%QTPGT;���������
����FQWDNG�%QTPGT:�����5K\G:�������
����FQWDNG�%QTPGT;���������
����FQWDNG�%QTPGT:�����������5K\G:�
����FQWDNG�%QTPGT;�����5K\G;�������
����FQWDNG�%QTPGT:������������5K\G:�
����FQWDNG�%QTPGT;�����5K\G;�������
����NQPI���5TE:5VCTV����.�
����NQPI���5TE;5VCTV����.�
����NQPI���5TE:'PF�����5K\G:����.�
����NQPI���5TE;'PF�����5K\G;����.�
��
EQPV����

A native mode example 167

������+PSWKTG�)GPGUKU�PCVKXG�+F	U�����
����NQPI�0CVKXG5[U6JTGCF+F���/U[U+PSWKTG
/KN5[UVGO��/A0#6+8'A6*4'#&A+&��/A07..��
����NQPI�0CVKXG&KI%COGTC+F���/FKI+PSWKTG
/KN%COGTC��/A0#6+8'A%#/'4#A+&��/A07..��
����NQPI�0CVKXG&KI%QPVTQN+F���/FKI+PSWKTG
/KN%COGTC��/A0#6+8'A%10641.A+&�
���/A07..��
����NQPI�0CVKXG&KI+F���/FKI+PSWKTG
/KN%COGTC���/A0#6+8'A+&��/A07..��
����NQPI�0CVKXG$WH+F���/DWH+PSWKTG
/KN+OCIG���/A0#6+8'A+&��/A07..��

������0QVKH[�/+.�VJCV�YG�CTG�GPVGTKPI�PCVKXG�OQFG����
����/U[U%QPVTQN
/KN5[UVGO��/A0#6+8'A/1&'A'06'4��/A07..��
���
������&Q�VJG�UGNGEVGF�QRGTCVKQP���
����UYKVEJ�
1RGTCVKQP�
����]
��������2TGCNNQECVG�ITCD�CPF�YCTR�DWHHGTU�
FQPG�QPEG�HQT�URGGF�����
������ECUG�#..1%#6'�
������]
�������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;��5K\G$CPF��+/A7$;6'�
�����������������+/A241%���0CVKXG)TCD$WH+F��
�������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;��5K\G$CPF��+/A7$;6'�
�����������������+/A241%���0CVKXG9CTR4GUWNV$WH+F��
�������KO$WH#NNQE
0CVKXG5[U6JTGCF+F���.���.���.��+/A(.1#6��+/A241%��
������������������0CVKXG9CTR$WH+F��
�������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;���.��+/A5*146��+/A241%�
������������������0CVKXG9CTR.WV:$WH+F��
�������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;���.��+/A5*146��+/A241%�
������������������0CVKXG9CTR.WV;$WH+F��
�������KH�
0CVKXG)TCD$WH+F����0CVKXG9CTR4GUWNV$WH+F����0CVKXG9CTR$WH+F����
����������0CVKXG9CTR.WV:$WH+F����0CVKXG9CTR.WV;$WH+F�
�������]
������������%CNEWNCVG�YCTR�EQGHHKEKGPVU���
���������KO)GP9CTR�%QTPGT
0CVKXG5[U6JTGCF+F��0CVKXG9CTR$WH+F��%QTPGT:��
�����������������������������%QTPGT;���%QTPGT:���%QTPGT;���%QTPGT:���%QTPGT;��
�����������������������������%QTPGT:���%QTPGT;���5TE:5VCTV��5TE;5VCTV�
�����������������������������5TE:'PF��5TE;'PF��+/A&'(#7.6���.��
����������KO)GP9CTR.WV/CVTKZ
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV:$WH+F�
��0CVKXG9CTR.WV;$WH+F��
��0CVKXG9CTR$WH+F���.���.��
�������_
�������GNUG
�������]
����������RTKPVH
�'TTQT�CNNQECVKPI�TGUQWTEGU���>P���
�������_
�������DTGCM����
����_�����

��
EQPV����

168 Chapter 12: Using MIL with Native Mode Functions

�����)TCD�CPF�9CTR�DWHHGT����
����ECUG�241%'55�
����]
���������2TQEGUU�KH�CNNQECVKQPU�YGTG�UWEEGUUHWN����
�������KH�
0CVKXG)TCD$WH+F����0CVKXG9CTR4GUWNV$WH+F����0CVKXG9CTR$WH+F���
�����������0CVKXG9CTR.WV:$WH+F���0CVKXG9CTR.WV;$WH+F�
�������]
������������)TCD�VJG�KOCIG���
����������KO&KI)TCD
0CVKXG5[U6JTGCF+F��0CVKXG&KI+F��0CVKXG&KI%COGTC+F�
��������������������0CVKXG)TCD$WH+F���.��0CVKXG&KI%QPVTQN+F���.��
�
������������9CTR�VJG�ITCDDGF�KOCIG����
����������KO+PV9CTR.WV
0CVKXG5[U6JTGCF+F��0CVKXG)TCD$WH+F��0CVKXG9CTR4GUWNV$WH+F�
�����������������������0CVKXG9CTR.WV:$WH+F��0CVKXG9CTR.WV;$WH+F���.���.��

������������%QR[�VJG�TGUWNV�KPVQ�VJG�FKURNC[�DWHHGT���
����������KO$WH%QR[
0CVKXG5[U6JTGCF+F��0CVKXG�9CTR4GUWNV$WH+F��0CVKXG$WH+F���.��
��������������������.��
�������_
�������DTGCM����
����_
������
������(TGG�ITCD�CPF�YCTR�DWHHGTU����
����ECUG�(4''�
����]
������KH�
0CVKXG)TCD$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG)TCD$WH+F��
������KH�
0CVKXG9CTR4GUWNV$WH+F�
���������KO$WH(TGG
PCVKXG5[U6JTGCF+F�0CVKXG9CTR4GUWNV$WH+F��
������KH�
0CVKXG9CTR$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR$WH+F��
������KH�
0CVKXG9CTR.WV:$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV:$WH+F��
������KH�
0CVKXG9CTR.WV;$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV;$WH+F��
������DTGCM����
����_
���_
��
�����0QVKH[�/+.�VJCV�YG�NGCXG�PCVKXG�OQFG����
���/U[U%QPVTQN
/KN5[UVGO��/A0#6+8'A/1&'A.'#8'��/A07..��
���
�����0QVKH[�/+.�VJCV�VJG�DWHHGT�YCU�OQFKHKGF����
���/DWH%QPVTQN
/KN+OCIG��/A/1&+(+'&��/A&'(#7.6��
_

Chapter 13: Distribution

This chapter presents how to distribute MIL-Lite
applications.

170 Chapter 13: Distribution

Distribution of MIL-Lite-based applications
There are some details that you must consider before you can
distribute a MIL-based application, either for your customers’
use or for your own.When doing this distribution, you must
redistribute MIL-Lite run-time DLLs and device drivers. This
chapter deals with the different ways to distribute your
application.

❖ When distributing an application that uses MIL-Lite, you do
not require a run-time license.

Redistributing MIL-Lite run-time DLL files and
device drivers with your application
To distribute your MIL application, you will have to redistribute
MIL run-time DLL files and the necessary device drivers with
your application.

It is important to remember that only one copy of MIL-Lite can
be present on a computer at a time. When installing an
application that uses MIL-Lite on a computer with a more
recent or equally recent version of MIL or MIL-Lite, the
application’s set-up program must not install MIL-Lite. The
application should use the version of MIL or MIL-Lite already
installed on the computer.

Conversely, if the version of MIL or MIL-Lite on the computer
is less recent than the application’s required version, a decision
must be made. Either the version of MIL or MIL-Lite already
on the computer must be removed before installing the newer
version, or the application cannot be installed on that computer.

Redistributing directly from the MIL-Lite CD
If the target computer (on which you want to install the
MIL-Lite run-time DLLs and device drivers) is immediately
accessible, you can install the run-time DLLs directly from the
MIL-Lite CD. To do so, run the MIL-Lite setup program and
choose the redistribution option.

Normal redistribution using your custom CD 171

Redistributing using your own setup program
Alternatively, to redistribute your MIL-Lite run-time DLLs and
device drivers, you can have your application’s setup program
call MIL-Lite’s redistribution setup program in one of two ways:

� Normal redistribution. Prompts your customer for setup
information.

� Silent redistribution. Uses a custom response file instead
of prompting your customer for information.

These are described in detail in the next sections.

Normal redistribution using your custom CD
To distribute your MIL-Lite run-time DLLs and device drivers,
you can have your application’s setup program call MIL-Lite’s
redistribution setup program. If you use the normal
redistribution mechanism, your customer will be prompted for
information during the setup. To use your setup program, do as
follows:

1. Copy the \REDIST directory from the MIL-Lite CD to your
installation directory.

2. If you want to save space on your target CD, you can remove
certain components of the \REDIST directory if they are
not required for your particular application. For example,
the \REDIST\GENESIS and
REDIST\MATROX\DRIVERS\GENESIS directories can
be removed if you are not using a Matrox Genesis board.
Refer to the redist.txt file for more examples.

3. Note that the driver-specific *.inf files must be modified.
These files can be found in the appropriate driver directory
located in the \REDIST directory. If you do not modify these
files there will be a reference to MIL-Lite and the MIL-Lite
CD each time a driver is being installed. You would likely
want to replace these references with references to your
product and CD. As well, under Windows 98/Me/2000, it is
only possible to install the Matrox frame grabber drivers if
the boards are physically present in the computer at the
time of installation.

172 Chapter 13: Distribution

4. Have your redistribution program call the setup.exe file in
the \REDIST directory. The setup.exe program installs the
required run-time MIL-Lite DLL files and device drivers on
your client’s computer. An example call would be:

Silent redistribution
A silent redistribution does not prompt your user for any
MIL-Lite information; instead, it uses a response file to provide
the necessary setup parameters for the intended computer. You
would use a silent redistribution when you are including
MIL-Lite within your application and you do not want to have
any Matrox Imaging setup dialog boxes appear. You could also
use a silent redistribution if you wanted to control the setup
parameters for your client.

It is not possible to create a response file for only a few of the
setup parameters and ask the customer for the rest of the setup
information. If you are going to use a response file, you must
answer all of the setup questions in the response file.

To redistribute the MIL-Lite run-time DLLs and device drivers
using a silent redistribution:

1. Follow the steps for a normal MIL-Lite redistribution.

2. Create a response file that provides the setup questions
with the answers you want. Refer to the next subsection for
details.

3. Have your redistribution program call the redist.exe
program with the additional ‘REDISTRIBUTION
RESPONSEFILE = "<filename>" -s’ parameter to specify
the name and the location of your response file. For
example:

%�>4GFKUV>/CVTQZ>TGFKUV�GZG�4'&+564+$76+10

>4GFKUV>/CVTQZ>TGFKUV�GZG�4'&+564+$76+10�4'52105'(+.'��&�>4GFKUV>/CVTQZ>TGURQPUG�VZV���U�

Silent redistribution 173

❖ In a silent redistribution, if a copy of MIL-Lite is found on
the target computer, the installation will not occur. MIL-Lite
will not be overwritten or uninstalled. In this instance, there
will be an error code in the registry key
HKEY_CURRENT_USER\ SOFTWARE\ MATROX
ENTRY: STATUS, signifying that a previous version of MIL
or MIL-Lite has been found.

Response file parameters
The response file’s format parameters follow; the error codes
can be found in the Redist.txt file. The order in which you place
the parameters in the response file is not important. What is
important is that each parameter, and its settings, is written
as one unbroken line of code, with a carriage return at the end
of the line. Any errors in the response file will cause the silent
distribution to stop. Here is an example of a typical response
file for an installation under Windows 98/Me.

These are the potential parameters for a response file.

� SILENTMODE.

This parameter designates silent installation and is a
required parameter. SILENTMODE must be set to 1.

� INSTALLATION_DIRECTORY.

This parameter specifies the target installation directory and
is a required parameter.

� DRIVERx.

This parameter designates the drivers that are to be
installed. Replace x with the number to assign to the driver.
More than one driver can be installed, but each driver must
be assigned a different number; these numbers do not have

5+.'06/1&'����
+056#..#6+10�A&+4'%614;���%�>2TQITCO�(KNGU>/CVTQZ�+OCIKPI
&4+8'4����/'6'14A++
&4+8'4����14+10
&/#A/'6'14A++����
&/#A14+10����
&/#A8)#����
/)#A&4+8'4���+056#..
572'4241���+)014'

174 Chapter 13: Distribution

to be consecutive. The available settings for this parameter
are: CORONA_II, METEOR_II, METEOR_II_1394, ORION, and
VGA. Use the METEOR_II setting for both the Matrox
Meteor-II /Standard and Meteor-II /Multi-Channel boards.

GENESIS, METEOR_II_DIG, and METEOR_II_CL are also
possible settings for a response file, but in this case the
redistribution will not be completely silent. Completely silent
redistribution is not possible with the Matrox Genesis,
Meteor-II /Digital, and Meteor-II /Camera Link boards
because they call on another library which does not support
silent redistribution.

Also, note that for backwards compatibility, response file
settings METEOR2 and METEOR2D can also be used for
DRIVERx. However, we recommend using the new settings,
METEOR_II and METEOR_II_DIG.

� DMA_MEMORY_SIZE.

This parameter is used only for Windows NT/2000 and
designates the non-paged memory size in Mbytes. The
memory set aside is not board-specific. This must be a
minimum of one Mbyte; if you only have a graphics controller,
or a graphics controller and a Matrox Meteor-II /1394 board,
you can set this parameter to a minimum of 0 Mbytes.

� DMA_CORONA_II, DMA_METEOR_II, DMA_ORION,
DMA_VGA.

These parameters are used with Windows 98/Me and they
designate the non-paged memory sizes in Mbytes for each
board. This must be done for each board installed under
Windows 98/Me except for Matrox Meteor-II /1394.

The DMA_VGA parameter designates the non-paged
memory sizes in Mbytes for the graphics controller.
DMA_VGA must have a value if you are creating a response
file under Windows 98/Me; in general, this should be set to
zero. This memory can be used to store data across processes
(using MbufCreate ()), although this should be used with
caution; it is generally better to leave memory control to MIL.

Silent redistribution 175

� MGA_DRIVER.

This parameter has two settings: INSTALL and IGNORE.
The INSTALL setting will install the MGA driver in silent
mode, while the IGNORE setting will not install the MGA
driver.

� Warning! If the MGA driver is installed and a previous version of the
MGA driver is on the computer, the installation program will
overwrite the previous version rather than uninstall it.

Note, in the RESPONSE.txt provided, you can comment out or
disable a setting by preceding the line with two slashes: //
(putting "//" anywhere on the line will also disable the setting).

Debugging the response file
The response file needs to be error-free. Some common errors
to avoid are:

� Missing underscores. The underscores must be present in
the parameter name and the parameter settings.

� Incorrect case. Every character in a parameter or setting
must be uppercase, unless it is part of a file path.

� Incorrect parameter setting. If a setting is defined in
units, those units must not be written in the response.txt file
(for example, DMA_CORONA_II = 4, not DMA_CORONA_II
= 4Mbytes)

� Broken line of code. Each parameter and its setting must
be written as one unbroken line of code finished by a carriage
return.

� Unknown location for response file. The response file is
not in the location specified by your redist.exe command line
parameter Responsefile.

� Unknown location for \Redist\. The \REDIST\
directory is not in the correct location on the installation CD.
Make sure when writing the redistribution program that the
path is correct when calling the redist.exe.

176 Chapter 13: Distribution

� Missing INF and DLL files (for Windows 98/Me). The
MtxImage.inf and Mtximgci.dll files are not in the root of the
installation CD. Make sure you copy them with the
\REDIST\ directory.

To debug your response file, you will have to run the
redistribution executable file, and fix any errors that occur.
Should an error occur, there will be an error code in the registry
key, HKEY_CURRENT_USER\ SOFTWARE\ MATROX
ENTRY: STATUS. Refer to the redist.txt, where the entire error
code list is stored.

Important notes for Windows 98/Me users
� Ensure that the O/S has a standard VGA display driver

installed prior to the installation of MGA drivers.

� The MGA drivers are only installed for boards that have an
on-board graphics controller (Matrox Corona-II and Matrox
Orion only).

� To avoid an MGA diagnostic message when installing the
MGA driver, set the RUN_DIAG parameter to NO in the
MGA.ini file prior to the installation. This file is located in
the \REDIST\MGADRV\WIN98\ directory.

Important notes for Windows NT/2000 users
� Ensure that the O/S has a standard VGA display driver

installed prior to the installation of the MGA drivers.

� The MGA drivers are only installed for boards that have an
on-board graphics controller (Matrox Corona-II, Matrox
Genesis and Matrox Orion only).

Uninstallation 177

Uninstallation
To uninstall previous versions of MIL-Lite, or other Matrox
Imaging Products, call the Matrox Imaging Products
Uninstallation program and specify the products that you want
to uninstall. To make the uninstallation silent, make the call
with the silent mode parameter. The following command-line
parameters are available:

For example, if you want to uninstall MIL and ActiveMIL in
silent mode without rebooting your system, call:

❖ The Matrox Imaging Products Uninstallation program is
copied to the Windows directory at the time of installation.

You will find the uninstallation status in the following registry
key: HKEY_CURRENT_USER\ SOFTWARE\ MATROX
ENTRY: UNINSTALL_STATUS

To see the error codes, refer to the redist.txt.

Parameter Description

/s Silent mode (no dialog box).

/n No reboot at the end of uninstallation.

/m UnInstall MIL or MIL-Lite.

/a UnInstall ActiveMIL or ActiveMIL-Lite.

/i UnInstall Intellicam.

/h Display parameters.

%�>9KPPV>7P+PUVCNN/+2�GZG�U�P�O�C

178 Chapter 13: Distribution

MIL and MIL-Lite licenses
MIL and MIL-Lite have different licensing terms and
mechanisms.

When you purchase MIL-Lite, you receive a development
license and a registration number. MIL-Lite also comes with a
royalty-free run-time license, which allows you to redistribute
applications based on MIL-Lite without paying additional
royalty fees.

With MIL, you can purchase two types of permanent licenses:
a development license and/or a run-time license. Licenses are
always verified when a MIL application is allocated, as well as
when the application is running; this verification has negligible
overhead. You can use a temporary license while waiting for a
permanent license.

Please refer to the Matrox Software License Agreement for the
legal provisions of using/redistributing MIL or MIL-Lite.

Part II:
The MIL-Lite

reference

Putting thoughts into motion....

Chapter 14 : Programming
with MIL

182 Chapter 14 : Programming with MIL

A MIL overview

The Matrox imaging library (MIL) is a hardware-independent
library divided into different modules based on functionality.

MIL-Lite

Data
generation

module

MIL basic objects

Graphics
module

Data
allocation

and access
module

System,
Digitizer

and Display
allocation

and control
modules

Application
allocation

and control
module

User
application

program

Hardware
driver

Hardware
device

A MIL overview 183

Part I of this manual, Using MIL-Lite, describes how to solve
typical applications using the library. Code examples are also
provided.

Starting your MIL application

Application and system
initialization

At the beginning of each MIL application, you need to:

1. Allocate your application with MappAlloc(). This will
create a control and execution environment for your
application. Once you have finished using an application,
you should free it with MappFree().

2. Allocate your hardware system with MsysAlloc(). This will
open communication channels and initialize the hardware
resources, which includes any available graphics controller.
Once Host communication has been established with a
system, you can allocate its memory resources, display, and
input capabilities.

For typical setups, you will only need to use one system,
whereas for more sophisticated setups, you might need to
allocate more than one. Use their system identifiers to select
between them.

Once you have completely finished using a system, you
should free the device, using MsysFree().

184 Chapter 14 : Programming with MIL

Default initialization If the required system is mapped to the default location
specified in the milsetup.h file, you can perform the above steps
by making a single call to MappAllocDefault(). Review the
milsetup.h file to make sure that the default setup
configuration matches your system configuration (refer to
Appendix A: The default setup configuration file for more
information on this file). The MappAllocDefault() macro can
also allocate a default display, digitizer, and image buffer. Use
the MappFreeDefault() macro to free the defaults allocated.

❖ Note, for more information about added functionality and
hardware limitations specific to your target system, refer to
MIL/MIL-Lite Board-Specific Notes.

Header file and libraries

The required header
file

To compile a MIL application program, you must include the
mil.h header file, in addition to the required standard C include
files. This mil.h file includes all constant definitions, type
definitions, and function prototypes. It also includes any
required macro files (for example, the milsetup.h file for the
MappAllocDefault() macro).

Linking to the MIL
library

After you have compiled your application program, you will
have to link it with the appropriate libraries or import libraries
for your operating system, compiler, and target board. The MIL
libraries are located in the
MATROX IMAGING\MIL\LIBRARY\WINNT\MSC\DLL or
user-specified directory.

MIL object manipulation concepts

Data objects MIL manipulates different types of objects. Objects must be
allocated by MIL before they can be used. Besides allocating
your MIL application and system (discussed in the previous
sub-section), the following objects must also be allocated:

■ Displays

■ Digitizers

■ Buffers

A MIL overview 185

Displays and digitizers With MIL, display and digitizer objects provide a way to
communicate or control dedicated hardware resources. Several
of these devices can be allocated at the same time; you use their
identifiers to select between them. Note that since MIL finds
the best device to use for display, display number parameters
should always be set to M_DEFAULT. Once you have finished
using a device, you should free it, using MdigFree() or
MdispFree(). Refer to Chapter 7: Grabbing with your digitizer
for more information on digitizers and Chapter 5: Displaying
an image for more information on graphics display controllers.

Buffers Buffers are simply storage locations for data. The most
generally used buffers, referred to as data buffers, are allocated
with MbufAllocColor(), MbufAlloc1d() or MbufAlloc2d();
whereas, other data buffer, such as pattern matching model
buffers, are allocated with commands that are specific to that
MIL module and are only used by that module.

You can manipulate portions of data buffers by allocating
sub-buffers or child buffers. Any manipulation performed on
the child buffer directly affects the parent buffer and vice versa.
Any operation that can be performed on the parent buffer can
also be performed on the child buffer. Refer to Chapter 3:
Specifying and managing your data buffers for more
information on allocating buffers.

Error handling and reporting

Error reporting When calling a function, it is a good idea to provide detection
and handling of errors, especially when allocating buffers and
devices. Otherwise, your program might produce unexpected
results. Note, every allocation returns an identifier; M_NULL is
returned if the allocation was unsuccessful.

MIL has an error-reporting mechanism that is adaptable to
your application development stage. By using
MappGetError(), you can detect errors by having them
reported to the Host screen, and by checking the system error
code. You can also enable or disable error reporting to the screen
with MappControl(); by default, errors are reported to the

186 Chapter 14 : Programming with MIL

screen. During application development, having errors
reported to the screen is recommended so that you can quickly
debug the application.

You can determine the success of a command, using
MappGetError(), then handle the outcome accordingly. Using
MappHookFunction(), you can attach (or detach) a
user-defined function to MIL errors when they occur. Using
MappGetError(), you can also get any associated error
messages.

The error description MappGetError() can provide the name of the function that
caused an error, a system-error message associated to the error,
and more specific sub-messages. Note, it returns the same
messages as those printed to the screen when error reporting
is enabled.

Tracing an application

Debugging an
application

When developing an application, it is often useful to trace the
command calls made by the application to debug it.

MIL supports an automatic tracing mechanism that can be
enabled or disabled with MappControl(). When the MIL
tracing mechanism is enabled, as each command is processed,
its function name and parameters are reported to the screen.
By default, the tracing mechanism is disabled.

You can attach or detach a user-defined function to the start or
end of all subsequent MIL function calls, using
MappHookFunction().

A quick command reference 187

A quick command reference

This section lists and provides a quick reference description of
the commands of each MIL module. It also discusses each
module, giving a brief overview of the capabilities of the library.
For a complete description of the syntax and use of each
command refer to the Command reference descriptions chapter.

The application allocation and control module
The application allocation and control module supports the MIL
allocation and environment control functions. These include
MIL initialization, error reporting, and application tracing
functions.

MIL allocation and
control commands

Command parameters Description

MappAlloc() InitFlag, ApplicationIdPtr Allocate a MIL application.

MappAllocDefault() InitFlag, ApplicationIdPtr,
SystemIdPtr, DisplayIdPtr,
DigIdPtr, ImageBufIdPtr

Allocate MIL application
defaults.

MappControl() ControlType, ControlValue Control an application
environment setting.

MappControlThread() ControlId, ControlType,
ControlValue, ControlVarPtr

Allocate/control MIL
application thread(s) or events.

MappFree() ApplicationId Free a MIL application.

MappFreeDefault() ApplicationId, SystemId, DisplayId,
DigId, ImageBufId

Free MIL application defaults.

MappGetError() ErrorType, ErrorPtr Get error codes and related
information.

MappGetHookInfo() EventId, InfoType, UserVarPtr Get information about a
hooked event.

MappHookFunction() HookType, HookHandlerPtr,
UserDataPtr

Hook a function to an event.

MappInquire() InquireType, UserVarPtr Inquire about the application
parameter setting.

MappModify() FirstMILId, SecondMILId,
ModificationType, ModificationFlag

Modify specified MIL object(s).

MappTimer() ControlValue, TimePtr Control the MIL timer.

188 Chapter 14 : Programming with MIL

The buffer allocation and access module
The data buffer allocation and access module is a group of
functions that supports all the MIL data buffer manipulations.
These tools include those that can allocate, read from, and write
to general data buffers.

Data allocation and
access commands

Command parameters Description

MbufAlloc1d() SystemId, SizeX, Type, Attribute,
BufIdPtr

Allocate a 1D data buffer.

MbufAlloc2d() SystemId, SizeX, SizeY, Type,
Attribute, BufIdPtr

Allocate a 2D data buffer.

MbufAllocColor() SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, BufIdPtr

Allocate a color data buffer.

MbufBayer() SrcImageBufId, DestImageBufId,
WhiteBalanceCoefficientsID,
ControlFlag

Decode the color information of a
single-band, Bayer color-encoded
image.

MbufChildColor() ParentBufId, Band, BufIdPtr Allocate a child data buffer within
a color parent buffer.

MbufChildColor2d() ParentBufId, Band, OffX, OffY,
SizeX, SizeY, BufIdPtr

Allocate a child data buffer within
a color parent buffer.

MbufChild1d() ParentBufId, OffX, SizeX, BufIdPtr Allocate a 1D child data buffer.

MbufChild2d() ParentBufId, OffX, OffY, SizeX,
SizeY, BufIdPtr

Allocate a 2D child data buffer.

MbufClear() DestImageBufId, Color Clears a buffer to a specified color.

MbufControl() BufId, ControlType, ControlValue Control specified buffer features.

MbufCopy() SrcBufId, DestBufId Copy data from one buffer to
another.

MbufCopyClip() SrcBufId, DestBufId, DestOffX,
DestOffY

Copy buffer clipping data outside
destination buffer.

MbufCopyColor() SrcBufId, DestBufId, Band Copy one or all bands of an image
buffer.

MbufCopyColor2d() SrcBufId, DestBufId, SrcBand,
SrcOffX, SrcOffY, DestBand,
DestOffX, DestOffY, SizeX, SizeY

Copy a 2D region of one or all
bands of an image buffer to
another buffer.

MbufCopyCond() SrcBufId, DestBufId, CondBufId,
Condition, CondValue

Copy conditionally the source
buffer to the destination buffer.

MbufCopyMask() SrcBufId, DestBufId, MaskValue Copy buffer with mask.

MbufCreateColor() SystemId, SizeBand, SizeX, SizeY,
Attribute, ControlFlag, Pitch,
ArrayOfDataPtr, BufIdPtr

Create a color data buffer.

A quick command reference 189

MbufCreate2d() SystemId, SizeX, SizeY, Type,
Attribute, ControlFlag, Pitch,
DataPtr, BufIdPtr

Create a two-dimensional data
buffer.

MbufDiskInquire() FileName, InquireType,
UserVarPtr

Inquire about the buffer data in a
file.

MbufExport() FileName, FileFormat, SrcBufId Export a data buffer to a file.

MbufExportSequence() FileName, FileFormatId,
BufArrayPtr, NumberOfImages,
FrameRate, ControlFlag

Export a sequence of image buffers
to an AVI file.

MbufFree() BufId Free a data buffer.

MbufGet() SrcBufId, UserArrayPtr Get data from a buffer and place it
in a user-supplied array.

MbufGetColor() SrcBufId, DataFormat, Band,
UserArrayPtr

Get data from one or all bands of a
buffer and place it in a
user-supplied array.

MbufGetColor2d() SrcBufId, DataFormat, Band, OffX,
OffY, SIzeX, SizeY, UserArrayPtr

Get data from a region of one of all
bands of a buffer and place it in a
user-supplied array.

MbufGetLine() ImageBufId, StartX, StartY, EndX,
EndY, Mode, NumPixelsPtr,
UserArrayPtr

Read a series of pixels within
specified coordinates, count them,
and store them in a user-defined
array.

MbufGet1d() SrcBufId, OffX, SizeX,
UserArrayPtr

Get data from a 1D area of a buffer
and place it in a user-supplied
array.

MbufGet2d() SrcBufId, OffX, OffY, SizeX, SizeY,
UserArrayPtr

Get data from a 2D area of a buffer
and place it in a user-supplied
array.

MbufImport() FileName, FileFormat, Operation,
SystemId, BufIdPtr

Import data from a file into a data
buffer.

MbufImportSequence() FileName, FileFormatId,
Operation, SystemId, BufArrayPtr,
StartImage, NumberOfImages,
ControlFlag

Import a sequence of images from
an *.avi file into separate image
buffers.

MbufInquire() BufId, InquireType, UserVarPtr Inquire about a data buffer
parameter setting.

MbufLoad() FileName, BufId Load MIL file format data from a
file into a data buffer.

MbufPut() DestBufId, UserArrayPtr Put data from a user-supplied
array into a data buffer.

Data allocation and
access commands

Command parameters Description

190 Chapter 14 : Programming with MIL

The digitizer allocation and control module

The digitizer allocation and control module supports the
allocation, manipulation, and control of digitizers.

MbufPutColor() DestBufId, DataFormat, Band,
UserArrayPtr

Put data from a user-supplied
array into one or all bands of a
data buffer.

MbufPutColor2d() DestBufId, DataFormat, Band,
OffX, OffY, SizeX, SizeY,
UserArrayPtr

Put data from a user-supplied
array into a region of one of all
bands of a data buffer.

MbufPutLine() ImageBufId, StartX, StartY, EndX,
EndY, Mode, NbPixelsPtr,
UserArrayPtr

Write a specified series of pixels
within specified coordinates on a
line.

MbufPut1d() DestBufId, OffX, SizeX,
UserArrayPtr

Put data from a user-supplied
array into a 1D area of a buffer.

MbufPut2d() DestBufId, OffX, OffY, SizeX, SizeY,
UserArrayPtr

Put data from a user-supplied
array into a 2D area of a buffer.

MbufRestore() FileName, SystemId, BufIdPtr Restore Mil file format data from a
file into an automatically allocated
data buffer.

MbufSave() FileName, BufId Save a data buffer in a file using
the MIL output file format.

Data allocation and
access commands

Command parameters Description

Digitizer allocation and
control commands

Command parameters Description

MdigAlloc() SystemId, DigNum, DataFormat,
InitFlag, DigIdPtr

Allocate a digitizer.

MdigChannel() DigId, Channel Select the active input channel
of a digitizer.

MdigControl() DigId, ControlType, ControlValue Control the specified digitizer.

MdigFocus() DigId, DestImageBufId,
FocusImageRegionBufId,
FocusHookPtr, UserDataPtr,
MinPosition, StartPosition,
MaxPosition,
MaxPositionVariation, ProcMode,
ResultPtr

Adjust a camera’s lens motor to
a position which provides
optimum focus.

MdigFree() DigId Free a digitizer.

MdigGrab() DigId, DestImageBufId Grab data from an input device
into a buffer.

A quick command reference 191

The display allocation and control module

The display allocation and control module supports the
allocation, manipulation, and control of displays.

MdigGrabContinuous() DigId, DestImageBufId Grab data continuously from an
input device.

MdigGrabWait() DigId, Flag Wait for the end of the grab in
progress.

MdigHalt() DigId Halt a continuous grab from an
input device.

MdigHookFunction() DigId, HookType,
HookHandlerPtr, UserDataPtr

Hook a function to a digitizer
event.

MdigInquire() DigId, InquireType, UserVarPtr Inquire about a digitizer
parameter setting.

MdigLut() DigId, LutBufId Copy a LUT buffer to a digitizer
LUT.

MdigReference() DigId, ReferenceType,
ReferenceLevel

Select digitization reference
level.

Digitizer allocation and
control commands

Command parameters Description

Display allocation and
control commands

Command parameters Description

MdispAlloc() SystemId, DispNum, DispFormat,
InitFlag, DisplayIdPtr

Allocate a display.

MdispControl() DisplayId, ControlType, ControlValue Control the behavior of a MIL
display window.

MdispDeselect() DisplayId, ImageBufId Stop displaying an image
buffer.

MdispFree() DisplayId Free a display.

MdispHookFunction() DisplayId, HookType,
HookHandlerPtr, UserDataPtr

Hook a function to a display
event.

MdispInquire() DisplayId, InquireType, UserVarPtr Inquire about a display
parameter setting.

MdispLut() DisplayId, LutBufId Copy a LUT buffer to a
display output LUT.

MdispOverlayKey() DisplayId, KeyMode, KeyCond,
KeyMask, KeyColor

Enable overlay keying.

MdispPan() DisplayId, XOffset, YOffset Pan and scroll a display.

192 Chapter 14 : Programming with MIL

The basic data generation module

The basic data generation module provides a limited set of data
generation tools that can be used to automatically generate
predefined data in a data buffer (for example, generating ramp
in a LUT buffer).

The basic graphics module
The basic graphics module provides a limited set of graphic
primitives that can be used to create drawings and text
annotations in an image.

MdispSelect() DisplayId, ImageBufId Select an image buffer to
display.

MdispSelectWindow() DisplayId, ImageBufId,
ClientWindowHandle

Select an image buffer to
display in a user-defined
window.

MdispZoom() DisplayId, XFactor, YFactor Zoom a display.

Display allocation and
control commands

Command parameters Description

Basic data generation
commands

Command parameters Description

MgenLutFunction() LutBufId, Func, a, b, c, StartIndex,
StartXValue, EndIndex

Generate data into a LUT
buffer using a specified
standard mathematical
function.

MgenLutRamp() LutId, StartIndex, StartValue,
EndIndex, EndValue

Generate ramp data into a
LUT buffer.

Basic graphics
commands

Command parameters Description

MgraDot() GraphContId, DestImageBufId,
XPos, YPos

Draw a dot.

MgraFill() GraphContId, DestImageBufId,
XStart, YStart

Perform a boundary-type
seed fill.

MgraFont() GraphContId, FontName Associate a text font with a
graphics context.

MgraFontScale() GraphContId, XFontScale,
YFontScale

Set the font scale of a
graphics context.

MgraFree() GraphContId Free a graphics context.

A quick command reference 193

The system allocation and inquiry module

The system allocation and inquiry module supports the
allocation and inquiry of systems.

MgraInquire() GraphContId, InquireType,
UserVarPtr

Inquire about the graphic
parameters.

MgraLine() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a line.

MgraRect() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a rectangle.

MgraRectFill() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a filled rectangle.

MgraText() GraphContId, DestImageBufId,
XStart, YStart, String

Write text.

Basic graphics
commands

Command parameters Description

System allocation and
inquiry commands

Command parameters Description

MsysAlloc() SystemTypePtr, SystemNum,
InitFlag, SystemIdPtr

Allocate a system.

MsysControl() SystemId, ControlType,
ControlValue

Control system behavior.

MsysFree() SystemId Free a system.

MsysInquire() SystemId, InquireType, UserVarPtr Inquire about a system
parameter setting.

194 Chapter 14 : Programming with MIL

Chapter 15: The command
reference descriptions

196 Chapter 15: The command reference descriptions

The reference description notes
The command descriptions are presented in alphabetical order.
Consequently, related commands are grouped together because
of their nomenclature. For example, all the data buffer
allocation and access module commands begin with the letters
Mbuf.

The M_ prefix All predefined MIL constants have been prefixed with M_ to
avoid conflicts with any previously defined user names.

Parameters All MIL parameters that end with Id expect an allocated MIL
object identifier. The letters preceding the Id indicate the
module with which to allocate the identifier. For example, the
variable BufId must be a buffer identifier created with
MbufAlloc...(). If the identifier can be any MIL object identifier
(that is, created with any MIL module), it is prefaced simply
with the sequence "MIL", for example MILId.

Examples Part I of this manual describes how the MIL commands are
used in typical applications. Code examples are also provided.

Command limitations Some command descriptions have a Status section. This section
describes any software or hardware limitation that is currently
imposed on the command. Some limitations should be corrected
in future revisions, but not necessarily.

Word usage All the MIL documentation uses the words function and
command interchangeably since most of the commands in MIL
are C functions. Digitizer and frame grabber are also used
interchangeably. Finally, in general, Host refers to the principal
CPU in one’s computer, while system refers to your Matrox
imaging board and its associated resources.

The reference description notes 197

In addition, some of these commands are implemented as
macros. If you are interested in the definition of the macros,
you can find them or their file names in the mil.h or milsetup.h
header file.

The use of the words board-specific or system-specific indicates
that the current subject might be valid only when using certain
boards or systems.

Fonts All commands and parameters are presented in bold so that
you can quickly scan for them. Predefined constants are
presented in a smaller font.

MappAlloc 199

MappAlloc

Synopsis Allocate a MIL application.

Format MIL_ID MappAlloc(InitFlag, ApplicationIdPtr)

Description This function allocates a MIL application. A MIL application must be
allocated prior to using any other MIL functions. The MIL functions use the
first application that was user-allocated.

The InitFlag parameter specifies the type of initialization to perform on
the MIL application. This parameter should be set to one of the following
values:

The ApplicationIdPtr parameter specifies the address of the variable in
which the application identifier is to be written. Since the MappAlloc()
function also returns the application identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

In multi-thread environments, the application is shared by all threads and
Mapp...() function calls from any thread apply to all threads unless
specifically localized to that thread by specifying an M_THREAD_CURRENT
flag when calling the function. However, if a new MIL application is
allocated within a thread, using MappAlloc(), this thread will be isolated
from the shared application and all application controls and hooks will be
independent. For example, turning off the error print in the new thread,
using MappControl(), will not affect the printing of errors by the original
shared application; nor will such a command called from a thread attached
to the original application affect the new application.

Note, upon allocation of a MIL application, a default system
(M_SYSTEM_HOST) is automatically allocated. This default Host system can
be used in MIL function calls by specifying M_DEFAULT_HOST wherever a
system identifier is required.

long InitFlag; Initialization flag

MIL_ID *ApplicationIdPtr; Storage location for application identifier

M_DEFAULT Default initialization.
M_QUIET Suppress the displaying of error messages during the

allocation of the application.

200 MappAlloc

In addition, a default graphic context is also allocated upon allocation of a
MIL application. This default graphic context can be used in MIL graphic
function calls by specifying M_DEFAULT wherever a graphic context
identifier is required.

In multi-thread applications, a default graphic context is allocated for each
thread in order to avoid inter-thread interference.

Return value The returned value is the application identifier. If allocation fails, M_NULL
is returned as the identifier.

See also MappFree(), MappAllocDefault()

MappAllocDefault 201

MappAllocDefault

Synopsis Allocate MIL application defaults.

Format void MappAllocDefault(InitFlag, ApplicationIdPtr,
 SystemIdPtr, DisplayIdPtr,
 DigIdPtr, ImageBufIdPtr)

Description This macro sets up the requested MIL and processing environments using
the defaults specified in the milsetup.h file. It can allocate and initialize a
MIL application, allocate the system to receive the MIL commands, allocate
the digitizer and display, and allocate and clear a displayable image buffer
on this target system, depending on what is requested.

The InitFlag parameter specifies the type of initialization setup to perform
and is used principally to initialize the default system. This parameter can
be set to one of the following:

M_PARTIAL should only be selected if the required resident software has
already been downloaded. This option is particularly useful when debugging
since resident software generally needs to be downloaded once after
power-up (or rebooting the system) and the downloading process can take
a substantial amount of initialization time on certain systems.

long InitFlag; Initialization flag

MIL_ID *ApplicationIdPtr; Storage location for application identifier
MIL_ID *SystemIdPtr; Storage location for system identifier

MIL_ID *DisplayIdPtr; Storage location for display identifier
MIL_ID *DigIdPtr; Storage location for digitizer identifier

MIL_ID *ImageBufIdPtr; Storage location for image buffer identifier

M_COMPLETE Perform a complete initialization of the MIL
environment: initialize MIL to its default state and
download any system’s required resident software. At
least one complete initialization is necessary after you
power-up your system.

M_PARTIAL Initialize MIL to its default state, but do not download
any system’s resident software.

M_SETUP Set InitFlag to one of the above, based on the default
state requested when the installation utility was run
(refer to the milsetup.h file to determine what these
setup defaults are).

202 MappAllocDefault

The ApplicationIdPtr parameter specifies the address of the variable in
which the application identifier is to be written. Upon execution of this
function, the default application specified in the milsetup.h file is allocated
and its identifier returned. Instead of using MappAllocDefault(), you can
use MappAlloc() to allocate an application. Note, an application must be
allocated in order to allocate any other object in MIL.

The SystemIdPtr parameter specifies the address of the variable in which
the system identifier is to be written. Upon execution of this function, the
default system specified in the milsetup.h file is allocated and its identifier
returned. Instead of using MappAllocDefault(), you can use MsysAlloc()
to allocate a system. MappAlloc() will also allocate a default Host system.
Note, a system must be allocated in order to allocate any other objects on it
(display, digitizer or data buffers).

The DisplayIdPtr parameter specifies the address of the variable in which
the display identifier is to be written. If this parameter is set to M_NULL, a
display is not allocated; otherwise, the default display specified in the
milsetup.h file is allocated and its identifier returned.

The DigIdPtr parameter specifies the address of the variable in which the
digitizer identifier is to be written. If this parameter is set to M_NULL, a
digitizer is not allocated; otherwise, the default digitizer specified in the
milsetup.h file is allocated and its identifier returned.

The ImageBufIdPtr parameter specifies the address of the variable in
which the image buffer identifier is to be written. If this parameter is set to
M_NULL, an image buffer is not allocated; otherwise, the default image
buffer specified in the milsetup.h file is allocated and its identifier returned.
It is then cleared and displayed on the system’s display screen.

The installation utility modifies the milsetup.h header file to create the
appropriate macros and customize the default setup. If the installation
utility is not executed, the default state supported will be undefined.

After installation, if you want to change the default state of
MappAllocDefault(), edit milsetup.h to suit your needs.

Note, if a digitizer is specified and the default camera type
(M_DEF_DIGITIZER_FORMAT) in the milsetup.h file is a 3-band color (RGB)
type, then a 3-band image buffer will be allocated by default; otherwise, a
1-band image buffer will be allocated.

MappAllocDefault 203

Example For example, a typical default setup for a Genesis board in its power-up
state with one input device (RS-170 camera) and one default image buffer
(full-screen size) on the display is:

If, for example, you don’t need to acquire data from the camera but want to
perform the rest of the above setup, you would make the following call:

Note, upon execution of this function, a default graphics context is
automatically allocated. This default graphics context can be used in MIL
graphic function calls by specifying M_DEFAULT wherever a graphic context
identifier is required.

See also MappFreeDefault(), MappAlloc(), MsysAlloc(), MdispAlloc(), MdigAlloc(),
MbufAllocColor(), MbufAlloc1d(), MbufAlloc2d()

MappAllocDefault(M_COMPLETE, &System, &Display, &Digitizer, &ImageBuffer);

MappAllocDefault(M_COMPLETE, &System, &Display, M_NULL, &ImageBuffer);

204 MappControl

MappControl

Synopsis Control an application environment setting.

Format void MappControl(ControlType, ControlValue)

Description This function controls the output of error messages to the screen, the output
of function names and parameters to the screen at the start and end of MIL
functions, and parameter checking at the start of MIL functions. It also
controls the processing and memory compensation modes.

In multi-thread environments, a MappControl() call applies to all
application threads running MIL, unless specifically limited to the calling
thread by adding M_THREAD_CURRENT to the ControlType parameter.
When you override settings for a specific thread, a subsequent call to change
that setting from a global level will not affect that thread.

For example, MappControl(M_TRACE, M_PRINT_ENABLE), called from
any application thread, enables trace printing in all threads running MIL.
However, MappControl(M_TRACE+M_THREAD_CURRENT,
M_PRINT_ENABLE) will enable trace printing in the currently running
thread only and will ignore calls from other threads that try to change trace
printing.

The ControlType and ControlValue parameters specify the type of event
to control and the setting with which to control the event respectively. These
parameters should be set according to the following combinations. To limit
the effect to the current thread, add M_THREAD_CURRENT to the control
type.

long ControlType; Type of event to control

long ControlValue; Flag to control event

ControlType ControlValue Result
M_ERROR M_PRINT_ENABLE Enable printing of error messages

(default).
M_ERROR M_PRINT_DISABLE Disable printing of error messages.

If error printing is disabled, you
can still check for error, using
MappGetError().

M_TRACE M_PRINT_ENABLE Enable printing of function names
and parameters.

MappControl 205

See also MappGetError(), MappHookFunction(), MappInquire()

M_TRACE M_PRINT_DISABLE Disable printing of function names
and parameters (default).

M_PARAMETER M_CHECK_ENABLE Enable checking of parameters
(default).

M_PARAMETER M_CHECK_DISABLE Disable checking of parameters.
Note, if parameter checking is
disabled to accelerate an
application, unpredictable behavior
can be expected when passing
invalid parameters to a function.

M_PROCESSING M_COMPENSATION_ENABLE Enable processing compensation; if
your system cannot perform a
certain processing operation due to
its limitations, processing will be
done by the Host (default).

M_PROCESSING M_COMPENSATION_DISABLE Disable processing compensation.
M_MEMORY M_COMPENSATION_ENABLE Enable memory compensation; if

your system cannot perform a
certain memory (buffer) allocation
due to insufficient memory
(default).

M_MEMORY M_COMPENSATION_DISABLE Disable memory compensation.

ControlType ControlValue Result

206 MappControlThread

MappControlThread

Synopsis Allocate/control MIL application thread(s) or events.

Format long MappControlThread(ControlId, ControlType,
 ControlValue, ControlVarPtr)

Description This function allocates/controls MIL application threads or events.

A MIL thread is a command stream used to send MIL commands to the
various allocated MIL systems. MIL automatically allocates a MIL thread
for each existing HOST thread that is using MIL. MappControlThread()
allows you to synchronize MIL threads running on the Host and/or various
MIL systems.

A MIL event is a marker that can be inserted between commands sent to a
given thread. Its state can be set to either M_SIGNALED or
M_NOT_SIGNALED in a given thread and can be inquired about or waited
for (MappControlThread(Event, M_EVENT_WAIT,...)), until in
M_SIGNALED state, by other threads in order to monitor the execution of
commands.

The event can be one of the following reset types:

MIL_ID ControlId; Thread or Event identifier

long ControlType; Type of control set on thread or event
long ControlValue; Value of control setting

long *ControlVarPtr; Storage location for returned value

Auto-Reset: Calling MappControlThread(Event, M_EVENT_SET,...), sets or resets
the event state to M_SIGNALED or M_NOT_SIGNALED. When in
M_SIGNALED state, the event is automatically reset to
M_NOT_SIGNALED when a call to MappControlThread(Event,
M_EVENT_WAIT, M_DEFAULT,...) returns. This type of event is useful in
applications where only one thread waits on a specific event.

Manual-Reset: Calling MappControlThread(Event, M_EVENT_SET,...), sets or resets
the event state to M_SIGNALED or M_NOT_SIGNALED. The event state
remains unchanged until an explicit call to
MappControlThread(Event, M_EVENT_SET,...) is issued. This type of
event is useful when multiple threads wait on a specific event.

MappControlThread 207

The ControlId parameter specifies the identifier of the thread or event to
be controlled. If set to M_DEFAULT, it uses the default MIL thread/event
identifier associated with the Host thread. The thread or event can be
user-allocated using the M_THREAD_ALLOC or M_EVENT_ALLOC
ControlType of MappControlThread().

The ControlType and ControlValue parameters specify the thread or
event control operation to be performed. These parameters can be set to the
following combinations:

 Thread
 ControlType ControlValue Result
M_THREAD_ALLOC M_DEFAULT Create a new selectable MIL thread on

a multi-thread system (such as Genesis)
and return its MIL_ID. Under Windows NT,
MIL automatically allocates a default MIL
thread for each existing Host thread. Note,
ControlId must be set to M_DEFAULT.

M_THREAD_FREE M_DEFAULT Free an existing MIL thread.
Note that default MIL threads will be
automatically freed. *

M_THREAD_SELECT M_DEFAULT Select the MIL thread to which subsequent
MIL commands will be sent.*

M_THREAD_WAIT M_DEFAULT Synchronize commands sent to a thread.
Force a wait for completion of all commands
currently executing in the thread. Useful for
commands sent to systems allowing an
immediate return (before execution is
actually completed).*

M_THREAD_MODE M_SYNCHRONOUS MIL commands sent to the thread are
completed (execution terminated) before
returning.*

 M_ASYNCHRONOUS MIL commands sent to the thread return
immediately (when the system and
command allow an immediate return).
(default) *

M_THREAD_IO_MODE M_SYNCHRONOUS MIL commands MbufGet...() and
MbufPut...() sent to the thread wait, before
executing, for the completion of previous
MIL commands sent in the thread
(default).*

M_ASYNCHRONOUS MIL commands MbufGet...() and
MbufPut...() sent to the thread execute
immediately.*

* No return value is required. ControlVarPtr should be set to M_NULL.

208 MappControlThread

The ControlVarPtr parameter specifies a pointer to the user variable
where the return value is to be written. Specify M_NULL if no return value
is required (see footnotes of control tables).

Return value The returned value is the requested event state, cast to a long. If no
information was requested (controls were only set), the returned value is
not valid.

Example mthread.c

 Event
 ControlType ControlValue Result
M_EVENT_ALLOC (any of the values listed below) Create a new MIL

synchronization event and
return its MIL ID.
Note, ControlId must be set to
M_DEFAULT.

M_DEFAULT or
M_NOT_SIGNALED+M_AUTO_RESET

Event is initialized as
M_NOT_SIGNALED and as an
Auto-Reset type.

M_SIGNALED+M_AUTO_RESET Event is initialized as
M_SIGNALED and as an
Auto-Reset type.

M_NOT_SIGNALED+M_MANUAL_RESET Event is initialized as
M_NOT_SIGNALED and as an
Manual-Reset type.

M_SIGNALED+M_MANUAL_RESET Event is initialized as
M_SIGNALED and as an
Manual-Reset type.

M_EVENT_FREE M_DEFAULT Free an existing MIL event.*
M_EVENT_SET M_SIGNALED or

M_NOT_SIGNALED
Set a MIL event to the specified
state.*

M_EVENT_WAIT M_DEFAULT Wait for the specified event to be
in an M_SIGNALED state. If the
event is auto-reset, resets to
M_NOT_SIGNALED after the
wait call is returned.*

M_EVENT_STATE M_DEFAULT Inquire the state of the MIL
event. The return value can be:
M_SIGNALED or
M_NOT_SIGNALED.

 * No return value is required. ControlVarPtr should be set to M_NULL.

MappFree 209

MappFree

Synopsis Free a MIL application.

Format void MappFree(ApplicationId)

Description This function deallocates a MIL application previously allocated with
MappAlloc().

Prior to freeing a MIL application, ensure that all allocated systems, buffers,
displays, and digitizers are freed. MappFree() must be the last function
called in a MIL application; no other MIL command can be executed after
a call to this function.

Note, if you use MappAllocDefault() to allocate the default MIL
application, you must use MappFreeDefault() to free the application.

The ApplicationId parameter specifies the application to free.

See also MappAlloc(), MappFreeDefault()

MIL_ID ApplicationId; Application identifier

210 MappFreeDefault

MappFreeDefault

Synopsis Free MIL application defaults.

Format void MappFreeDefault(ApplicationId, SystemId, DisplayId,
 DigId, ImageBufId)

Description This macro frees the MIL application defaults that were allocated with the
MappAllocDefault() macro (located in milsetup.h). Note, this command
does not affect what is being displayed on the system’s display; if you want
to clear the display, you should do so, using MdispDeselect(), before calling
MappFreeDefault().

The ApplicationId parameter specifies the identifier of the application to
deallocate.

The SystemId parameter specifies the identifier of the system to deallocate.

The DisplayId parameter specifies the identifier of the display to
deallocate. If set to M_NULL, no display is deallocated.

The DigId parameter specifies the identifier of the digitizer to deallocate.
If set to M_NULL, no digitizer is deallocated.

The ImageBufId parameter specifies the identifier of the image buffer to
deallocate. If set to M_NULL, no buffer is deallocated.

See also MappAllocDefault(), MappFree(), MsysFree(), MdispFree(), MdigFree(),
MbufFree()

MIL_ID ApplicationId; Application identifier

MIL_ID SystemId; System identifier
MIL_ID DisplayId; Display identifier

MIL_ID DigId; Digitizer identifier
MIL_ID ImageBufId; Image buffer identifier

MappGetError 211

MappGetError

Synopsis Get error codes and related information.

Format long MappGetError(ErrorType, ErrorPtr)

Description This function obtains current or global system error codes, subcodes,
messages, submessages, function codes and function names. This function
allows you to check for errors after each MIL function call or to get the first
error that occurred after a series of MIL function calls.

A typical use of this function is to check whether a buffer allocation call was
successful (MbufAllocColor(), MbufAlloc1d(), and MbufAlloc2d()).

This function can also be used when error-reporting to the screen has been
disabled, using MappControl(), and you want to obtain information about
a detected error.

In multi-thread environments, an MappGetError() call returns the error
of the current thread or, if none, checks for errors in the other threads
running MIL. To return only errors in the current thread, add
M_THREAD_CURRENT to the ErrorType parameter
(M_CURRENT+M_THREAD_CURRENT).

The ErrorType parameter specifies the error type. This parameter can be
set to one of the following:

long ErrorType; Error type

void *ErrorPtr; Storage location for information

ErrorType Description
M_CURRENT Get the error code returned by the last command call. The

system current-error code is reset to M_NULL_ERROR
before each MIL function call and is set to a specific error
code if an error occurs while trying to execute the
function.

M_CURRENT_SUB_NB Get the number of error subcodes associated with the
current error.

M_CURRENT_SUB_1...3 Get the nth error subcode returned by the last command
call. Note, when there is no error, the error subcode(s) is
set to M_NULL_ERROR.

M_CURRENT_FCT Get the function code associated with the current error.

212 MappGetError

The ErrorPtr parameter specifies the address of the variable in which the
requested information is to be written. If the error code is read and it is
equal to M_NULL_ERROR, no error has occurred. Since the
MappGetError() function also returns the error code or subcode, you can
set this parameter to M_NULL.

M_CURRENT+
M_MESSAGE

Get the error message associated with the current error.
The system current- error message is reset to "NULL"
before each MIL function call and is set to a specific error
message if an error occurs while trying to execute the
function.

M_CURRENT_SUB_1...3+
M_MESSAGE

Get the nth error submessage associated with the current
error.

M_CURRENT_FCT+
M_MESSAGE

Get the function name associated with the current error.

M_GLOBAL Get the error code of the first error that has occurred
since the last call to MappGetError(M_GLOBAL...). The
global system-error code is reset to M_NULL_ERROR after
each MappGetError() call with this setting.

M_GLOBAL_SUB_NB Get the number of error subcodes associated with the
first error that occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL_SUB_1...3 Get the nth error subcode of the first error that has
occurred
since the call to MappGetError(M_GLOBAL...). Note,
when there is no error, the error subcode(s) is set to
M_NULL_ERROR.

M_GLOBAL_FCT Get the function code associated with the first error that
has occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL+
M_MESSAGE

Get the error message associated with the first error that
has occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL_SUB_1...3+
M_MESSAGE

Get the nth error submessage associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL_FCT+
M_MESSAGE

Get the function name associated with the first error that
has occurred since the last call to
MappGetError(M_GLOBAL...).

ErrorType Description

MappGetError 213

This variable should be a pointer to a long when getting error codes,
subcodes, number of subcodes, and function codes. This variable should be
a pointer to a string when getting messages, submessages and function
names. The string must be at least M_ERROR_MESSAGE_SIZE characters
in size.

Return value The returned value is the requested error code or subcode. When getting
error messages, submessages, and function names, the returned value is
the associated error code.

Example mshift.c

214 MappGetHookInfo

MappGetHookInfo

Synopsis Get information about a hooked event.

Format long MappGetHookInfo(EventId, InfoType, UserVarPtr)

Description This function retrieves information about the event that caused the
hook-handler function to be called. This function should only be called
within the scope of a hook-handler function call (see
MappHookFunction()).

Note that functions hooked to an event execute on a distinct thread. This
permits the functions to run asynchronously from the operation that fired
the event and from functions hooked to other events. Although there is a
small queue to permit a certain amount of overlap, hooked functions should
not take longer to execute than the period in which two of their associated
events can occur. You cannot determine the instance of the event that fired
the function, and even if this were possible, this information would generally
not be very useful. Typically, a hooked function performs the minimum
number of operations required and, if necessary, performs longer processes
by launching other threads.

The EventId parameter specifies the event identifier received from the
hook-handler function.

The InfoType parameter specifies the type of information to get.

If the hook handler was called with an M_ERROR_CURRENT HookType,
supported values for InfoType are:

MIL_ID EventId; Event identifier received from the
hook-handler function

long InfoType; Type of information to get

void *UserVarPtr; Storage location for the information

InfoType Description
M_CURRENT Error code.
M_CURRENT_SUB_NB Number of error subcodes.
M_CURRENT_SUB_1 Error subcode 1.
M_CURRENT_SUB_2 Error subcode 2.
M_CURRENT_SUB_3 Error subcode 3.
M_CURRENT_FCT Function code that caused an error.

MappGetHookInfo 215

If the hook-handler function was called with an M_ERROR_GLOBAL
HookType, supported values for InfoType are:

If the hook-handler function was called with an M_TRACE_START or
M_TRACE_END HookType, supported values for InfoType are:

M_MESSAGE+M_CURRENT Error message.
M_MESSAGE+M_CURRENT_SUB_1 Error submessage 1.
M_MESSAGE+M_CURRENT_SUB_2 Error submessage 2.
M_MESSAGE+M_CURRENT_SUB_3 Error submessage 3.
M_MESSAGE+M_CURRENT_FCT Name of the function that caused an error.

InfoType Description

InfoType Description
M_GLOBAL Error code.
M_GLOBAL_SUB_NB Number of error subcodes.
M_GLOBAL_SUB_1 Error subcode 1.
M_GLOBAL_SUB_2 Error subcode 2.
M_GLOBAL_SUB_3 Error subcode 3.
M_GLOBAL_FCT Function code that caused an error.
M_MESSAGE+M_GLOBAL Error message.
M_MESSAGE+M_GLOBAL_SUB_1 Error submessage 1.
M_MESSAGE+M_GLOBAL_SUB_2 Error submessage 2.
M_MESSAGE+M_GLOBAL_SUB_3 Error submessage 3.
M_MESSAGE+M_GLOBAL_FCT Function name that caused an error.

InfoType Description
M_CURRENT_FCT Code of the function that just started or ended.
M_MESSAGE+M_CURRENT_FCT Name of the function that just started or ended.
M_PARAM_NB Number of parameters associated to the

function call.
M_PARAM_TYPE+n. Data type of the nth parameter. This can be:

M_TYPE_LONG, M_TYPE_SHORT,
M_TYPE_CHAR, M_TYPE_DOUBLE,
M_TYPE_PTR, M_TYPE_MIL_ID, or
M_TYPE_STRING. (The pointer to a string is
invalid after exiting the hook function. For
future use, copy and save it.)

M_PARAM_VALUE+n Value of the nth parameter.

216 MappGetHookInfo

If the hook handler was called with an M_MODIFIED_BUFFER HookType,
supported values for InfoType are:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written.

UserVarPtr should be a pointer to a long when getting error codes,
subcodes, number of subcodes, function codes and parameter types. It
should be a pointer to a string when getting error messages, submessages,
and function names. The string must be at least M_ERROR_MESSAGE_SIZE
characters in size. When getting parameter values, UserVarPtr should be
a pointer to the type specified by the returned value of an M_PARAM_TYPE+n
request in a previous call to this function.

Return value The returned value is M_NULL if successful; a non M_NULL value on error,
without logging any errors in the application.

See also MappHookFunction()

InfoType Description
M_MODIFIED_BUFFER
+M_BUFFER_ID

MIL identifier of the modified buffer.

M_MODIFIED_BUFFER
+M_REGION_OFFSET_X

X offset, of the modified region in the buffer,
as a long value.

M_MODIFIED_BUFFER
+M_REGION_OFFSET_Y

Y offset, of the modified region in the buffer,
as a long value.

M_MODIFIED_BUFFER
+M_REGION_SIZE_X

Width, of the modified region in the buffer, as
a long value.

M_MODIFIED_BUFFER
+M_REGION_SIZE_Y

Height, of the modified region in the buffer,
as a long value.

MappHookFunction 217

MappHookFunction

Synopsis Hook a function to an event.

Format void MappHookFunction(HookType, HookHandlerPtr,
 UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified application event. Once a hook-handler function is defined and
hooked to an event, it is automatically called when the event occurs.

Note that functions hooked to an event execute on a distinct thread. This
permits the functions to run asynchronously from the operation that fired
the event and from functions hooked to other events. Although there is a
small queue to permit a certain amount of overlap, hooked functions should
not take longer to execute than the period in which two of their associated
events can occur. You cannot determine the instance of the event that fired
the function, and even if this were possible, this information would generally
not be very useful. Typically, a hooked function performs the minimum
number of operations required and, if necessary, performs longer processes
by launching other threads.

You can hook more than one function to an event by making separate calls
to MappHookFunction() for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.

The user can obtain information concerning the event, using
MappGetHookInfo(), and take appropriate action before returning
control to the application.

This function is typically used to trap errors that occur in an application
without checking every MIL command execution with MappGetError() or
to detect the start or end of certain MIL commands.

long HookType; Type of event to hook

MAPPHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void *UserDataPtr; User data pointer

218 MappHookFunction

In multi-thread environments, an MappHookFunction() call hooks or
unhooks the function specified by HookHandlerPtr to all application
threads running MIL, unless specifically limited to the calling thread by
adding M_THREAD_CURRENT to the HookType parameter (for example,
to call the hook-handler function only for errors occurring in the current
thread, specify M_ERROR_CURRENT+M_THREAD_CURRENT as the
HookType parameter).

The HookType parameter specifies the event type. This parameter can be
set to one of the following values. Note that a hooked function must be
unhooked by combining the HookType parameter with M_UNHOOK.

When setting the HookType parameter to M_TRACE_START or
M_TRACE_END, the only MIL function that can be called in a hook function
is MappGetHookInfo(), otherwise infinite recursion will occur. Note that
when hooking the errors, you could end up with infinite recursion if MIL
functions generating an error are called within the same hook function.

HookType Description
M_ERROR_CURRENT Call the hook-handler function each time an

error occurs.
M_ERROR_GLOBAL Call the hook-handler function when the first

error occurs in a series of MIL calls.
M_TRACE_START Call the hook-handler function at the start of

each MIL function.
M_TRACE_END Call the hook-handler function at the end of

each MIL function.
M_UNHOOK
+M_ERROR_CURRENT

Detach the hook-handler function being called
each time an error occurs.

M_UNHOOK
+M_ERROR_GLOBAL

Detach the hook-handler function being called
when the first error occurs in a series of MIL
calls.

M_UNHOOK
+M_TRACE_START

Detach the hook-handler function being called
at the start of each MIL function.

M_UNHOOK
+M_TRACE_END

Detach the hook-handler function being called
at the end of each MIL function.

M_UNHOOK
+M_ERROR_FATAL

Detach the hook-handler function being called
before a fatal-error exit.

MappHookFunction 219

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MAPPHOOKFCTPTR, MFTYPE and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype of this function has been kept for backwards
compatibility. However, because of the current chaining method, the
function always returns null.

See also MappGetHookInfo(), MappControl(), MappGetError()

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Event identifier to pass to
MappGetHookInfo() when inquiring
about the hooked event

void MPTYPE *UserDataPtr; user data pointer

220 MappInquire

MappInquire

Synopsis Inquire about the application parameter setting.

Format long MappInquire(InquireType, UserVarPtr)

Description This function inquires about the specified application control, processing
mode, or memory setting.

The InquireType parameter specifies the type of information to inquire
about. This parameter can be set to one of the following values. See
MappControl() for more information about these values. In multi-thread
environments, you can inquire the status of a control from any thread;
however, to inquire the status of a thread-specific parameter, add
M_THREAD_CURRENT to the InquireType parameter
(M_ERROR+M_THREAD_CURRENT).

long InquireType; Type of information to inquire

void *UserVarPtr; Storage location for inquired information

InquireType Description
M_CURRENT_APPLICATION Identifier of the current MIL application, if any.

Returns 0, without generating an error, if no
application is allocated.

M_ERROR Error printing mode (M_PRINT_ENABLE or
M_PRINT_DISABLE).

M_MEMORY Memory compensation mode
(M_COMPENSATION_ENABLE or
M_COMPENSATION_DISABLE).

M_LICENSE_FINGERPRINT The hardware component upon which the system
fingerprint is based.
M_MATROX_VGA_FINGERPRINT
M_MATROX_ETHERNET_FINGERPRINT
M_MATROX_HARD_ID_KEY_FINGERPRINT
M_MATROX_BOARD_FINGERPRINT

MappInquire 221

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MappInquire()
function also returns the requested information, you can set this parameter
to M_NULL. The variable should be a pointer to a long, unless you are using
M_VERSION, in which case it should be a pointer to a double.

Return value The returned value is the requested system information cast to long.

See also MappControl()

M_LICENSE_MODULES The module for which there is a valid license. The value
returned will be a bitwise combination of the following:
M_LICENSE_LITE
M_LICENSE_DEBUG
M_LICENSE_IM
M_LICENSE_CODE
M_LICENSE_MEAS
M_LICENSE_PAT
M_LICENSE_MOD
M_LICENSE_JPEG2000
M_LICENSE_BLOB
M_LICENSE_CAL
M_LICENSE_OCR
M_LICENSE_JPEGSTD

M_PARAMETER Parameter checking mode (M_CHECK_ENABLE or
M_CHECK_DISABLE).

M_PROCESSING Processing compensation mode
(M_COMPENSATION_ENABLE or
M_COMPENSATION_DISABLE).

M_TRACE Trace printing mode (M_PRINT_ENABLE or
M_PRINT_DISABLE).

M_VERSION Version of MIL library.
M_OBJECT_TYPE+(MILId) Type of the specified MIL object.

(M_APPLICATION, M_SYSTEM, M_LUT, M_DISPLAY,
M_DIGITIZER, M_IMAGE, M_KERNEL,
M_STRUCT_ELEMENT, M_ARRAY, M_HIST_LIST,
M_EXTREME_LIST, M_PROJ_LIST, M_EVENT_LIST,
M_COUNT_LIST, M_BLOB_OBJECT, M_PAT_OBJECT,
M_GRAPHIC_CONTEXT, M_OCR_OBJECT,
M_CAL_OBJECT, M_CODE_OBJECT, M_MEAS_OBJECT,
M_MOD_OBJECT, M_USER_OBJECT_1, or
M_USER_OBJECT_2)

InquireType Description

222 MappModify

MappModify

Synopsis Modify specified MIL object(s).

Format void MappModify(FirstMILId, SecondMILId,
 ModificationType, ModificationFlag)

Description This function modifies the specified MIL object(s) according to the specified
operation.

The FirstMILId parameter specifies the identifier of the first MIL object
to be modified.

The SecondMILId parameter specifies the identifier of the second MIL
object (if applicable) to be modified.

The ModificationType parameter specifies the desired operation. This
parameter should be set to the following value:

The ModificationFlag parameter should be set to M_NULL.

MIL_ID FirstMILId; First MIL object identifier

MIL_ID SecondMILId; Second MIL object identifier
long ModificationType; Type of modification

long ModificationFlag; Modification flag

M_SWAP_ID Exchange the identifiers of the first and second
specified MIL objects

MappTimer 223

MappTimer

Synopsis Control the MIL timer.

Format void MappTimer(ControlValue, TimePtr)

Description This function controls the MIL timer. This is useful for benchmarking
operations in a MIL application. The MIL timer resolution varies according
to the hardware and operating system used.

The ControlValue parameter specifies the control to exert on the MIL
timer. It can be set to one of the following:

The TimerPtr parameter specifies the address of the variable in which to
store the timer information produced by the M_TIMER_READ or
M_TIMER_RESOLUTION controls. For the M_TIMER_WAIT control,
TimerPtr specifies the variable from which to read the timer information.
For M_TIMER_RESET, set TimerPtr to M_NULL.

Example mpatrot.c

long ControlValue; Type of modification

double *TimePtr; Storage location for time

ControlValue Description
M_TIMER_RESET Resets a MIL timer to zero.
M_TIMER_READ Reads the time (in seconds) of the MIL timer,

since the last reset.
M_TIMER_RESOLUTION Reads the MIL timer resolution (in seconds).
M_TIMER_WAIT Wait for the specified period of time (in

seconds) before returning.

224 MbufAlloc1d

 MbufAlloc1d

Synopsis Allocate a 1D data buffer.

Format MIL_ID MbufAlloc1d(SystemId, SizeX, Type, Attribute, BufIdPtr)

Description This function allocates a one-dimensional one-band data buffer on the
specified system.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError() or by verifying that the buffer identifier
returned is not M_NULL. When a buffer is no longer required, release it,
using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeX parameter specifies the buffer width in the units appropriate for
the selected type of buffer attributes. For example, if the buffer has a LUT
buffer attribute, specify the number of LUT entries to allocate.

The Type parameter specifies a combination of two values: the depth and
type of the data. Express the depth in bits and give the data range as one
of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

MIL_ID SystemId; System identifier

long SizeX; X dimension
long Type; Data depth and data type

long Attribute; Buffer attribute
MIL_ID *BufIdPtr; Storage location for buffer identifier

Data type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

MbufAlloc1d 225

Note, you cannot allocate a 1-bit (binary) LUT buffer.

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
For example, to allocate a LUT buffer, you should set the Attribute
parameter to M_LUT. Set this parameter to one of the following:

When allocating an image buffer (M_IMAGE), you must also specify the
intended purpose of this buffer by combining M_IMAGE with one or more of
the following:

The maximum (total) number of grab (M_GRAB) buffers that can be allocated
is restricted by the total amount of DMA memory that was specified at the
time of installation.

For sytems with on-board processors, the total number of M_GRAB buffers
is limited by the amount of on-board memory.

When allocating buffers for operations that require a source and destination
buffer, and one of the buffers has an M_COMPRESS attribute, the data will
be compressed or decompressed depending on the attributes of the
destination buffer. If both the source and destination buffers have
M_COMPRESS specifiers but different compression types, the data will be
re-compressed according to the settings of the destination buffer.

Attribute Description
M_IMAGE Image data.
M_LUT Lookup table.

Usage Specifiers Description
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data. This type of

buffer is usually allocated in physically
contiguous, non-paged memory.

M_COMPRESS An image buffer that can hold compressed data.
Note that a buffer with this attribute cannot have
the M_SIGNED data type.

226 MbufAlloc1d

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

If you need to allocate an on-board image buffer, it is important to note that,
since MIL selects which device will be used to display the image, you should
only allocate this buffer after allocating the display to which it will be
selected (MdispAlloc()).

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAlloc1d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Compression
specifiers:

Description Supported data
formats

M_JPEG_LOSSLESS The buffer will be used to hold JPEG
lossless.

1-band, 8- or 16-bit data.

M_JPEG_LOSSY The buffer will be used to hold JPEG
lossy data.

1-band 8-bit data.

Board-dependent internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).

Board-dependent location specifiers:
M_ON_BOARD Force the buffer in the on-board memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_NON_PAGED Force the buffer in non-pageable memory.

MbufAlloc1d 227

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

Status Current limitation:

■ For M_LUT data buffer, the data type must be 8, 16, or 32-bit integer or
floating point.

See also MbufAlloc2d(), MbufAllocColor(), MbufFree()

228 MbufAlloc2d

MbufAlloc2d

Synopsis Allocate a 2D data buffer.

Format MIL_ID MbufAlloc2d(SystemId, SizeX, SizeY, Type, Attribute,
BufIdPtr)

Description This function allocates a two-dimensional one-band data buffer on the
specified system.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError() or by verifying that the buffer identifier
returned is not M_NULL. When a buffer is no longer required, release it,
using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, specify the width and
height in pixels.

MIL_ID SystemId; System identifier

long SizeX; X dimension
long SizeY; Y dimension

long Type; Data depth and data type
long Attribute; Buffer attributes

MIL_ID *BufIdPtr; Storage location for buffer identifier

MbufAlloc2d 229

The Type parameter specifies a combination of two values: the depth and
type of the data. Express the depth in bits and give the data range as one
of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

Note, you cannot allocate a 1-bit (binary) LUT buffer.

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
This parameter should be set to one of the following:

When selecting an M_IMAGE attribute, it should be set to M_IMAGE +
specifier. For example, to allocate an image buffer that can be processed and
displayed, you should set the Attribute parameter to M_IMAGE + M_DISP.
The specifier can be one or more of the following:

The maximum (total) number of grab (M_GRAB) buffers that can be allocated
is restricted by the total amount of DMA memory that was specified at the
time of installation.

For boards with on-board processors, the total number of M_GRAB buffers
is limited by the amount of on-board memory.

When allocating buffers for operations that require a source and destination
buffer, and one of the buffers has an M_COMPRESS specifier, the data will
be compressed or decompressed depending on the attributes of the

Data type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

M_IMAGE Image data.
M_LUT Lookup table.

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data. This type of buffer is usually

allocated in physically contiguous, non-paged memory.
M_COMPRESS An image buffer that can hold compressed data. Note that a buffer

with this attribute cannot have the M_SIGNED data type.

230 MbufAlloc2d

destination buffer. If both the source and destination buffers have
M_COMPRESS specifiers but different compression types, the data will be
re-compressed according to the settings of the destination buffer.

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

Compression specifiers: Description Supported data
formats

M_JPEG_LOSSLESS The buffer will be used to hold
JPEG lossless data.

1-band, 8- or 16-bit
data.

M_JPEG_LOSSLESS_INTERLACED The buffer will be used to hold
JPEG lossless data in separate
fields.

1-band, 8- or 16-bit
data.

M_JPEG_LOSSY The buffer will be used to hold
JPEG lossy data.

1-band 8-bit data.

M_JPEG_LOSSY_INTERLACED The buffer will be used to hold
JPEG lossy data in separate
fields.

1-band 8-bit data.

Board-dependent internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).

Board-dependent location specifiers:
M_ON_BOARD Force the buffer in the on-board memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_NON_PAGED Force the buffer in non-pageable memory.

MbufAlloc2d 231

If you need to allocate an on-board image buffer, it is important to note that,
since MIL selects which device will be used to display the image, you should
only allocate this buffer after allocating the display to which it will be
selected (MdispAlloc()).

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAlloc2d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

Status Current limitation:

■ For M_LUT data buffer, the data type must be 8, 16, or 32-bit integer or
floating point.

See also MbufAlloc1d(), MbufAllocColor(), MbufFree()

232 MbufAllocColor

MbufAllocColor

Synopsis Allocate a color data buffer.

Format MIL_ID MbufAllocColor(SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, BufIdPtr)

Description This function allocates a data buffer with multiple color bands on the
specified system. This type of buffer allows the representation of color
images (for example, RGB).

This function creates buffers that have a two-dimensional surface for each
specified color band. You can use MbufAlloc1d() and MbufAlloc2d() to
create single band one- or two-dimensional data buffers, respectively.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError(), or by verifying that the buffer
identifier returned is not M_NULL.

When a buffer is no longer required, release it, using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeBand parameter specifies the number of (x,y) surfaces (also called
color bands) to allocate to the buffer. Specify one band for each color
component the buffer will need to store for the image. Monochrome images
require one band; RGB color images require three color bands. This
parameter can be set to any non-zero integer value. However, in general,
only 1- and 3-band buffers are allowed.

MIL_ID SystemId; System identifier

long SizeBand; Number of color bands
long SizeX; X dimension

long SizeY; Y dimension
long Type; Data type and data depth per band

long Attribute; Buffer attributes
MIL_ID *BufIdPtr; Storage location for buffer identifier

MbufAllocColor 233

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth per band. Express the depth in bits and give the data type as
one of the following:

For example, when allocating an 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

Note, you cannot allocate a 1-bit (binary) LUT buffer.

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
This parameter should be set to M_LUT, or to M_IMAGE + specifier. For
example, to allocate an image buffer that can be processed and displayed,
you should set the Attribute parameter to M_IMAGE + M_DISP. The
specifier can be one or more of the following:

The maximum (total) number of grab (M_GRAB) buffers that can be allocated
is restricted by the total amount of DMA memory that was specified at the
time of installation.

For boards with on-board processors, the total number of M_GRAB buffers
is limited by the amount of on-board memory.

When allocating buffers for operations that require a source and destination
buffer, and one of the buffers has an M_COMPRESS specifier, the data will
be compressed or decompressed depending on the attributes of the

Data type Description Depth/band (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which data can be grabbed. This type

of buffer is usually allocated in physically contiguous,
non-paged memory.

M_COMPRESS An image buffer that can hold compressed data. Note
that a buffer with this attribute cannot have the
M_SIGNED data type.

234 MbufAllocColor

destination buffer. If both the source and destination buffers have
M_COMPRESS specifiers but different compression types, the data will be
re-compressed according to the settings of the destination buffer.

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

Compression specifiers: Description Supported data formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or 16-bit data, and
3-band data in: M_RGB24 or
M_RGB48.

M_JPEG_LOSSLESS_INTERLACED The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band, 8- or 16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossy data.

1-band 8-bit data, and 3-band
8-bit data in:
M_RGB24, M_YUV24,
M_YUV12, M_YUV9, M_YUV16
+ M_PLANAR, or
M_YUV16 + M_PACKED.

M_JPEG_LOSSY_INTERLACED The buffer will be
used to hold JPEG
lossy data in
separate fields.

1-band 8-bit data, and 3-band
8-bit data in
M_YUV16 + M_PACKED.

Internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).
M_NO_FLIP Force the buffer to be top up.

MbufAllocColor 235

For the following specifiers, the buffer must be an 8-bit multi-band color
buffer. See MIL/MIL-Lite Board-Specific Notes to verify which formats
are supported on your board.

Note that it might be slower to use buffers that have been forced with one
of these attributes. Although there is no right or wrong storage format to
use, certain operations are optimized for some formats.

Internal storage format specifiers for color buffers:
M_PACKED Buffer bands to be packed (color buffer only).
M_PLANAR Force the buffer bands to be planar (color buffer

only).
M_RGB3 + M_PLANAR 3-bit (RGB 1:1:1) planar pixels.
M_RGB15 + M_PACKED 16-bit packed pixels (XRGB 1:5:5:5). Note that when

accessing an M_RGB15+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits are set
to 0.

M_RGB16 + M_PACKED 16-bit packed pixels (RGB 5:6:5). Note that when
accessing an M_RGB16+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits are set
to 0.

M_BGR24 + M_PACKED 24-bit (BGR) packed pixels.
M_RGB24 + M_PLANAR 24-bit (RGB 8:8:8) planar pixels.
M_BGR32 + M_PACKED 32-bit (BGR) packed pixels.
M_RGB48 + M_PLANAR 48-bit (RGB 16:16:16) planar pixels.
M_RGB96 + M_PLANAR 96-bit (RGB 32:32:32) planar pixels.
M_YUV9 + M_PLANAR YUV9 planar standard.
M_YUV12 + M_PLANAR YUV12 planar standard.
M_YUV16 + M_PLANAR YUV16 planar (4:2:2) standard.
M_YUV16 + M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_UYVY + M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_YUYV + M_PACKED YUV16 packed (4:2:2) standard.
M_YUV24 + M_PLANAR YUV24 planar standard.

Location specifiers:
M_ON_BOARD Force the buffer in the on-board video memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_PAGED Force the buffer in pageable memory.
M_NON_PAGED Force the buffer in non-pageable memory.

236 MbufAllocColor

Note that you can allocate one M_DISP+M_ON_BOARD buffer.

If you need to allocate an on-board image buffer, it is important to note that,
since MIL selects which device will be used to display the image, you should
only allocate this buffer after allocating the display to which it will be
selected (MdispAlloc()).

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAllocColor() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufAlloc1d(), MbufAlloc2d(), MbufFree()

MbufBayer 237

MbufBayer

Synopsis Decode the color information of a single-band, Bayer color-encoded image.

Format void MbufBayer(SrcImageBufId, DestImageBufId,
WhiteBalanceCoefficientsID, ControlFlag)

Description This function converts a single-band, Bayer color-encoded image into a 1-
or 3-band image.

This function can also white balance the image, if the appropriate
coefficients are provided. White balancing occurs after the image has been
converted. Note that you can use MbufBayer() to automatically determine
the appropriate coefficients by adding M_WHITE_BALANCE_CALCULATE to
the ControlFlag parameter when grabbing a white image.

The SrcImageBufId parameter specifies the identifier of the source image
buffer. The source buffer must be a single-band 8-bit image buffer, and be
at least 2x2 in size. The source buffer is considered unsigned.

The DestImageBufId parameter specifies the identifier of the destination
image buffer. The destination buffer must have either 1 or 3 bands, with 8
bits per pixel, and be at least 2x2 in size. The destination buffer is considered
unsigned.

To avoid internal buffer type conversions, the destination buffer should be
either monochrome, or a 3-band color buffer in one of the following formats:

■ M_RGB24+M_PLANAR

■ M_BGR32+M_PACKED

■ M_YUV16_YUYV (equivalent to M_YUV16+M_PACKED).

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier

MIL_ID WhiteBalanceCoefficientsId; White balance coefficients buffer
ID

long ControlFlag; Pattern of source data’s pixels and
whether to calculate white balance
coefficients

238 MbufBayer

Destination buffers in other formats will be converted automatically to one
of the formats specified above, before the Bayer-to-Color conversion is
performed. After the conversion, the destination buffer is then converted
back to its original format. Note that additional conversion operations will
increase the processing time.

The WhiteBalanceCoefficientsId parameter specifies the MIL array
buffer that contains the white balance coefficients (when white balancing
an image), or the buffer into which the coefficients are placed (when
calculating white balance coefficients). The coefficients must be in a
single-band 32-bit floating-point buffer that has an M_ARRAY attribute and
that has the dimensions 3x1. The first, second, and third values in the array
are used for the red, green, and blue bands, or Y, U, and V bands,
respectively. When this parameter is left to M_DEFAULT, no white balance
coefficients are applied.

The coefficients are applied according to the format of the destination buffer:

■ If the format of the destination buffer is RGB or a similar variant (such
as BGR), the pixels of each band are multiplied by the corresponding
value.

■ If the format of the destination buffer is YUV, the pixels of the Y band are
multiplied by the first value and the pixels of the U and V bands are
summed with the second and third values, respectively.

■ If the format of the destination buffer is 8-bit monochrome, the pixels of
the image are multiplied by the first value in the array; the last two values
in the array are ignored.

The results of the white balance correction are saturated, if necessary,
according to the bit depth of the destination.

The ControlFlag identifies the Bayer pattern to use in the conversion, and
specifies whether the white balance coefficients will be calculated. This
parameter can be set to one of the following:

M_BAYER_GB Use the Bayer pattern that has the top-left pixel
as the green component and the next pixel as the
blue component. That is, pixel [0,0] is green, pixel
[1,0] is blue and pixel [0,1] is red in the source
image. R G

G B

MbufBayer 239

The control M_WHITE_BALANCE_CALCULATE can be added to the
ControlFlag parameter to automatically determine the coefficients to be
used for the white balance operation. Note that to use
M_WHITE_BALANCE_CALCULATE, the source image buffer must be entirely
white.

❖ If the MdigControl(M_GRAB_SCALE) control type has been changed to a
value other than 1 prior to grabbing a Bayer image, the Bayer image will
not be converted property; some of the Bayer pattern is lost during the
scaling process, rendering color recovery impossible.

M_BAYER_BG Use the Bayer pattern that has the top-left pixel
as the blue component and the next pixel as the
green component. That is, pixel [0,0] is blue, pixel
[1,0] is green and pixel [1,1] is red in the source
image.

M_BAYER_RG Use the Bayer pattern that has the top-left pixel
as the red component and the next pixel as the
green component. That is, pixel [0,0] is red, pixel
[1,0] is green and pixel [1,1] is blue in the source
image.

M_BAYER_GR Use the Bayer pattern that has the top-left pixel
as the green component and the next pixel as the
red component. That is, pixel [0,0] is green, pixel
[1,0] is red and pixel [0,1] is blue in the source
image.

RG

GB

R

G

G

B

RG

GB

240 MbufChildColor

MbufChildColor

Synopsis Allocate a color-band child data buffer within a color parent buffer.

Format MIL_ID MbufChildColor(ParentBufId, Band, BufIdPtr)

Description This function allocates a child data buffer within the specified, previously
allocated, color parent data buffer. It selects one of the color bands of the
data buffer and allocates the band as a child of that buffer.

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A color child buffer is considered a data buffer in its own right. It can be any
color band of its parent buffer, and can be used in the same circumstances
as its parent buffer. A child buffer inherits its type and attributes from the
parent buffer.

To allocate a child in one specific band, or specifically in all bands, use
MbufChildColor2d() instead of MbufChildColor().

When this buffer is no longer required, release it, using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.
The parent buffer cannot have an M_COMPRESS attribute.

The Band parameter specifies the index of the color band of the parent data
buffer from which to allocate the child data buffer. This parameter can be
set to a value from 0 to (number of bands of the parent buffer - 1). For RGB
parent buffers, band 0 corresponds to the red band, band 1 corresponds to
the green band, and band 2 corresponds to the blue band. The specified color
band should be valid in the parent buffer.

For RGB parent buffers, Band can be set to: M_RED, M_GREEN, M_BLUE.
For HLS parent buffers, Band can be set to: M_HUE, M_LUMINANCE, or
M_SATURATION. For YUV parent buffers, Band can be set to: M_Y, M_U, or
M_V.

MIL_ID ParentBufId; Parent buffer identifier

long Band; Index of the color band
MIL_ID *BufIdPtr; Storage location for child buffer identifier

MbufChildColor 241

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChildColor()
function also returns the child buffer identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufAllocColor(), MbufChild2d(), MbufCopyColor(), MbufChildColor2d(),
MbufFree()

242 MbufChildColor2d

MbufChildColor2d

Synopsis Allocate a child data buffer within a color parent buffer.

Format MIL_ID MbufChildColor2d(ParentBufId, Band, OffX, OffY, SizeX,
SizeY, BufIdPtr)

Description This function allocates a child data buffer within the specified, previously
allocated, color parent data buffer. It selects a two-dimensional region in
one or all of the color bands of the parent data buffer and allocates the region
as a child of that buffer.

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A color child buffer is considered a data buffer in its own right. It can be
used in the same circumstances as its parent buffer. A child buffer inherits
its type and attributes from the parent buffer.

When this buffer is no longer required, release it, using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.
The parent buffer cannot have an M_COMPRESS attribute unless the Band
parameter is set to M_ALL_BAND.

The Band parameter specifies the index of the color band of the parent data
buffer from which to allocate the child data buffer. This parameter can be
set to a value from 0 to (number of bands of the parent buffer - 1). For RGB
parent buffers, band 0 corresponds to the red band, band 1 corresponds to
the green band, and band 2 corresponds to the blue band. The specified color
band should be valid in the parent buffer.

MIL_ID ParentBufId; Parent buffer identifier

long Band; Index of the color band
long OffX; X pixel offset relative to parent buffer

long OffY; Y pixel offset relative to parent buffer
long SizeX; X dimension

long SizeY; Y dimension
MIL_ID *BufIdPtr; Storage location for child buffer identifier

MbufChildColor2d 243

For RGB parent buffers, Band can be set to: M_RED, M_GREEN, M_BLUE.
For HLS parent buffers, Band can be set to: M_HUE, M_LUMINANCE, or
M_SATURATION. For YUV parent buffers, Band can be set to: M_Y, M_U, or
M_V.

❖ Note that if you are creating a child buffer in the U or V band of a YUV
parent buffer, the dimensions of the child buffer must not exceed the
dimensions of the U or V band of the parent.

To allocate a child buffer with the same number of bands as the parent
buffer, specify M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the child buffer, relative to the parent buffer’s top-left pixel. The
offsets must be within the width and height of the parent buffer,
respectively.

The SizeX and SizeY parameters specify the width and height of the child
buffer, respectively.

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChildColor2d()
function also returns the child buffer identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufAllocColor(), MbufChild1d(), MbufChild2d(), MbufChildColor(),
MbufCopyColor2d(), MbufFree()

244 MbufChild1d

MbufChild1d

Synopsis Allocate a 1D child data buffer.

Format MIL_ID MbufChild1d(ParentBufId, OffX, SizeX,BufIdPtr)

Description This function allocates a one-dimensional child data buffer within the
specified, previously allocated parent data buffer. If the parent buffer is
multi-band, this function allocates a multi-band child buffer; the child is
allocated within the specified one-dimensional region in each color band. To
allocate a child in one specific band, or specifically in all bands, use
MbufChildColor2d() instead of MbufChild1d().

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A child buffer is considered a data buffer in its own right, and can be used
in the same circumstances as its parent buffer. A child buffer inherits its
type and attributes from the parent buffer.

When this buffer is no longer required, it can be released using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.

The OffX parameter specifies the offset of the child buffer relative to the
parent buffer’s top-left pixel. The offset must be within the width of the
parent buffer.

The SizeX parameter specifies the width of the child buffer.

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChild1d() function
also returns the child buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufChild2d(), MbufChildColor(), MbufFree()

MIL_ID ParentBufId; Parent buffer identifier

long OffX; X pixel offset relative to parent buffer
long SizeX; Child buffer width

MIL_ID *BufIdPtr; Storage location for child buffer identifier

MbufChild2d 245

MbufChild2d

Synopsis Allocate a child buffer within a specific region of a parent buffer.

Format MIL_ID MbufChild2d(ParentBufId, OffX, OffY, SizeX, SizeY,
 BufIdPtr)

Description This function allocates a two-dimensional child buffer within a region of the
specified, previously allocated data buffer. If the parent buffer is multi-band,
this function allocates a multi-band child buffer; the child is allocated within
the specified region in each color band. To allocate a child region in one
specific band, or specifically in all bands, use MbufChildColor2d() instead
of MbufChild2d().

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Any modification to the child buffer affects the parent and
vice versa. Note, a parent buffer can have several child buffers.

A child buffer is considered a data buffer in its own right, and can be used
in the same circumstances as its parent buffer. A child buffer inherits its
type and attributes from the parent buffer.

When this buffer is no longer required, it can be released, using
MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the child buffer’s top-left pixel, relative to the parent buffer’s
top-left pixel. The given offsets must be within the width and height of the
parent buffer.

The SizeX and SizeY parameters specify the width and height of the child
buffer.

MIL_ID ParentBufId; Parent buffer identifier

long OffX; X pixel offset relative to the parent buffer
long OffY; Y pixel offset relative to the parent buffer

long SizeX; Child buffer width
long SizeY; Child buffer height

MIL_ID *BufIdPtr; Storage location for child buffer identifier

246 MbufChild2d

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChild2d() function
also returns the child buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufChild1d(), MbufChildColor(), MbufChildColor2d(), MbufFree()

MbufClear 247

MbufClear

Synopsis Clears a buffer to a specified color.

Format void MbufClear(DestImageBufId, Color)

Description This function clears the entire specified buffer to the specified color.

The DestImageBufId parameter specifies the identifier of the image buffer
to clear.

The Color parameter specifies the grayscale or RGB color value with which
to clear the buffer. Set this parameter as follows:

■ To clear a 1-band buffer, set this parameter to any value. This value will
be cast to the type of the destination buffer.

■ To clear a multi-band buffer to a grayscale value, set this parameter to
any value. This value will be cast to the type of the destination buffer’s
bands and replicated in each band.

■ To clear an 8-bit 3-band buffer to an RGB color, set this parameter using
the following macro:

M_RGB888(red component, green component, blue component)

■ To clear a 16-bit or 32-bit multi-band buffer to a color value, use
MgraControl().

See also MgraClear()

MIL_ID DestImageBufId; Destination image buffer identifier
double Color; Color with which to clear buffer

248 MbufControl

MbufControl

Synopsis Control specified buffer features.

Format void MbufControl(BufId, ControlType, ControlValue)

Description This function allows you to control certain buffer features.

The BufId parameter specifies the identifier of the buffer.

The ControlType and ControlValue parameters specify the buffer
feature to control and the value needed for the control. These two
parameters should be set to one of the following:

MIL_ID BufId; Buffer identifier

long ControlType; Type of buffer feature to control
double ControlValue; Value associated with control type

ControlType ControlValue Description
M_ASSOCIATED_LUT LUT buffer

identifier
Associate a LUT buffer with the specified
image buffer for display purposes. The image
buffer must be a 1-band 8-bit buffer.
If and when the image buffer is selected to a
windowed display, the required changes occur
to produce the display effect of the LUT,
unless the display is also associated with a
custom LUT (MdispLut()). For windowed
displays, MIL indirectly programs the
physical output LUTs with the image’s
associated LUT (through the use of a
Windows palette). In general, the LUT will
not be used when the image is selected to an
auxiliary display.
MIL checks the target system to determine
whether or not a LUT is supported. If not, an
error is generated.
To dissociate a LUT buffer from an image
buffer, set ControlValue to M_DEFAULT.

MbufControl 249

For buffers with an M_IMAGE + M_COMPRESS attribute, ControlType and
ControlValue can also be set to one of the following:

❖ If the buffer contains any data, setting one of these control types
automatically deletes the data. This is because, for MIL-Lite to
decompress the buffer’s data, it must know the control values that were
used in the compression. If you change one of these controls, MIL-Lite
will be unable to decompress the data and the data is therefore irrelevant.
See Chapter 9: JPEG compression for more information.

M_MODIFIED M_DEFAULT Signal MIL that the buffer content was
modified without using MIL. This control
must be used to ensure that MIL updates its
internal information on the buffer. For
example, if a display buffer was modified
outside MIL, the display will not be updated
until you use this control. Note, if only a
certain region of the buffer was modified, it is
more efficient to specify an appropriate child
buffer as BufId.

M_WINDOW_DC_ALLOC M_DEFAULT Allocate a Windows display context (DC) for
drawing. Determine the DC handle (HDC)
using MbufInquire() with the
M_WINDOW_DC inquire type.
When using this control type, the buffer must
be internally stored in M_DIB or M_DDRAW
format, and cannot be a child buffer.
The display context must be allocated and
used only for a very short period of time; free
it as soon as possible.

M_WINDOW_DC_FREE M_DEFAULT Free a Windows display DC.

ControlType ControlValue Description

ControlType ControlValue Description
M_HUFFMAN_AC ID of buffer with

M_ARRAY attribute
Associate an AC Huffman table
to the buffer. Only used for JPEG
lossy compressions. If the buffer
is 3-band, the same table is
applied to all bands.

250 MbufControl

M_HUFFMAN_AC_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate an AC Huffman table
to the buffer. Only used for JPEG
lossy compressions of YUV
buffers. The table is applied only
to the Y band.

M_HUFFMAN_AC_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate an AC Huffman table
to the buffer. Only used for JPEG
lossy compressions of YUV
buffers. The table is applied to
the U and V bands.

M_HUFFMAN_DC ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table to
the buffer. Only used for JPEG
compression (both lossy and
lossless). If the buffer is 3-band,
the same table is applied to all
bands.

M_HUFFMAN_DC_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table to
the buffer. Only used for JPEG
compressions (both lossy and
lossless) of YUV buffers. The
table is applied only to the Y
band. Can only be used if the
compressed image buffer is of a
JPEG lossy type.

M_HUFFMAN_DC_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table to
the buffer. Only used for JPEG
compressions (both lossy and
lossless) of YUV buffers. The
table is applied to the U and V
bands. Can only be used if the
compressed image buffer is of a
lossy type.

M_PREDICTOR 0, 1 (default), or 2 For JPEG lossless compressions,
use predictor #0 (no prediction),
predictor #1 (the
"pixel-to-the-left" predictor), or
predictor #2 (the “pixel-above”
predictor). If the buffer is 3-band,
the same predictor is applied to
all bands.

ControlType ControlValue Description

MbufControl 251

M_Q_FACTOR integer value
between 1 and 99;
default value is 50

Quantization factor for lossy
compressions. The higher the
factor, the more the compression,
but the lower the image quality.
In JPEG lossy, the Q factor is
applied to all bands.

M_Q_FACTOR_LUMINANCE integer value
between 1 and 99;
default value is 50

Quantization factor for JPEG
lossy compressions of YUV
images. The higher the factor, the
more the compression, but the
lower the image quality. The
factor is applied only to the Y
band.

M_Q_FACTOR_CHROMINANCE integer value
between 1 and 99;
default value is 50

Quantization factor for JPEG
lossy compressions of YUV
images. The higher the factor, the
more the compression, but the
lower the image quality. The
factor is applied to the U and V
bands.

M_QUANTIZATION ID of buffer with
M_ARRAY attribute

Associate a quantization table to
the buffer for a JPEG
compression.

M_QUANTIZATION_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate a quantization table to
the buffer. Only used for JPEG
lossy compressions of YUV
buffers. The table is applied only
to the Y band.

M_QUANTIZATION_CHROMINANCE
ID of buffer with
M_ARRAY attribute

Associate a quantization table to
the buffer. Only used for JPEG
lossy compressions of YUV
buffers. The table is applied to
the U and V bands.

M_RESTART_INTERVAL any integer value
greater than 0;
default value is 8

Place restart markers after every
n rows of data (for JPEG lossless
compressions) or after every n
8x8 blocks of data (for JPEG
lossy compressions).

ControlType ControlValue Description

252 MbufControl

Note that setting the M_QUANTIZATION control type will reset the
M_Q_FACTOR control type to its default value (50). If you set the
M_Q_FACTOR control type after specifying a custom table with the
M_QUANTIZATION control type, the custom table will be scaled accordingly.

Note The ControlType M_ASSOCIATED_LUT is not available with 32-bit or
floating-point buffers.

MIL-Lite does not support JPEG2000 compression, and requires dedicated
hardware for JPEG compression. This is not a restriction under MIL.

See also MbufLoad(), MbufRestore(), MbufImport(), MbufExport(),
MbufSave()

MbufCopy 253

MbufCopy

Synopsis Copy data from one buffer to another.

Format void MbufCopy(SrcBufId, DestBufId)

Description This function copies the specified source buffer data to the specified
destination buffer. If the source and destination buffers are of different data
types, MIL converts the data automatically.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied into the destination.
If the destination depth is greater than that of the source, the source data
is zero or sign-extended (depending on the type of the source) when copied
into the destination. If the destination is larger in size than the source,
exceeding areas of the buffer are unaffected.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.
When copying a binary buffer to a buffer of a different depth, each bit is
copied into the least-significant bit of a different destination pixel. The
remaining bits of the destination pixel are set to 0; to propagate the bit value
to all bits, use MimBinarize().

When copying from a floating-point buffer to an integer buffer, the values
are truncated.

If the source buffer is a 3-band YUV buffer and the destination buffer is a
1-band buffer, only the Y band (luminance) is copied. If the source buffer is
a 3-band RGB buffer and the destination buffer is a 1-band buffer, only the
red band is copied.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

Note This function is optimized for packed binary buffers.

See also MbufCopyClip(), MbufCopyCond(), MbufCopyMask(), MbufCopyColor(),
MbufCopyColor2d()

MIL_ID SrcBufId; Source buffer identifier

MIL_ID DestBufId; Destination buffer identifier

254 MbufCopyClip

MbufCopyClip

Synopsis Copy buffer, clipping data outside the destination buffer.

Format void MbufCopyClip(SrcBufId, DestBufId, DestOffX, DestOffY)

Description This function copies the source buffer data to the destination buffer starting
at the specified offset. Data outside of the destination buffer is not copied
(it is clipped).

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.
When copying a binary buffer to a buffer of a different depth, each bit is
copied into the least-significant bit of a different destination pixel. The
remaining bits of the destination pixel are set to 0; to propagate the bit value
to all bits, use MimBinarize().

When copying from a floating-point buffer to an integer buffer, the values
are truncated.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The DestOffX and DestOffY parameters specify the horizontal and vertical
pixel offsets of the destination buffer area at which to start copying data.
Specify offsets relative to the top-left corner of the destination buffer (0,0).
These two parameters can be set to negative values and can be specified
anywhere outside the destination buffer. Data extending beyond the limits
of the destination buffer is not copied (it is clipped).

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyCond(), MbufCopyMask()

MIL_ID SrcBufId; Source buffer identifier

MIL_ID DestBufId; Destination buffer identifier
long DestOffX; X pixel offset relative to destination buffer

long DestOffY; Y pixel offset relative to destination buffer

MbufCopyColor 255

MbufCopyColor

Synopsis Copy one or all bands of an image buffer.

Format void MbufCopyColor(SrcBufId, DestBufId, Band)

Description This function copies one or all color bands of the specified source buffer to
the specified destination buffer. It can also be used to insert or extract a
color component from a color image.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to (number of bands of the
buffer - 1), where band 0 is red, band 1 is green, and band 2 is blue, or to
one of the following:

The Band parameter gives the index of the color band to extract or insert.
If the source is a monochrome buffer and the destination is a multi-band
(color) buffer, the unique source buffer band is inserted into the specified
band of the destination buffer. If the source is a multi-band buffer and the
destination is a monochrome buffer, the specified source buffer band is
extracted from the source buffer and written to the destination buffer. If
both are multi-band buffers, the specified band(s) is copied from the source
to the destination.

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

MIL_ID SrcBufId; Source buffer identifier

MIL_ID DestBufId; Destination buffer identifier
long Band; Index of the color band to copy

M_RED Copy to/from the red color band.
M_GREEN Copy to/from the green color band.
M_BLUE Copy to/from the blue color band.
M_ALL_BAND Copy all color bands.

256 MbufCopyColor

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination. Also, the buffers must have the same number of bands if
all bands are to be copied.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyCond(), MbufCopyMask()

MbufCopyColor2d 257

MbufCopyColor2d

Synopsis Copy a two-dimensional region of one or all bands of an image buffer to
another buffer.

Format void MbufCopyColor2d(SrcBufId, DestBufId, SrcBand, SrcOffX,
 SrcOffY, DestBand, DestOffX, DestOffY, SizeX, SizeY)

Description This function copies a two-dimensional region of one or all color bands of
the specified source buffer to the specified color band(s) of the destination
buffer. It can also be used to insert or extract a color component from a color
buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The SrcBand and DestBand parameters specify the index of the source
and destination color bands. These parameters can be set to any index from
0 to (number of bands of the buffer - 1), where band 0 is red, band 1 is green,
and band 2 is blue or to one of the following:

MIL_ID SrcBufId; Source buffer identifier

MIL_ID DestBufId; Destination buffer identifier
long SrcBand; Index of the source color band to copy

long SrcOffX; X pixel offset relative to the source parent buffer
long SrcOffY; Y pixel offset relative to the source parent buffer

long DestBand; Index of the destination color band
long DestOffX; X pixel offset relative to the destination parent

buffer

long DestOffY; Y pixel offset relative to the destination parent
buffer

long SizeX; X dimension
long SizeY; Y dimension

M_RED Copy to/from the red color band.
M_GREEN Copy to/from the green color band.
M_BLUE Copy to/from the blue color band.
M_ALL_BAND Copy all color bands.

258 MbufCopyColor2d

If the source is a monochrome buffer and the destination is a multi-band
(color) buffer, the unique source buffer band is inserted into the specified
band of the destination buffer. If the source is a multi-band buffer and the
destination is a monochrome buffer, the specified source buffer band is
extracted from the source buffer and written to the destination buffer. If
both are multi-band buffers, the specified band(s) is copied from the source
to the destination.

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

If the source buffer is a YUV buffer, the band can be set to: M_Y, M_U, M_V,
or M_ALL_BAND. Note that when copying into the U or V band of a YUV
buffer, the dimensions of the source buffer must not exceed the dimensions
of the U or V band of the destination.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination. Also, the buffers must have the same number of bands if
all bands are to be copied.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.

The SrcOffX parameter specifies the horizontal pixel offset of the region to
read relative to the source buffer starting coordinate. The offset must be
within the width of the source buffer.

The SrcOffY parameter specifies the vertical pixel offset of the region to
read relative to the source buffer starting coordinate. The offset must be
within the height of the source buffer.

The DestOffX parameter specifies the horizontal pixel offset of the region
to write relative to the destination buffer starting coordinate. The offset
must be within the width of the destination buffer.

The DestOffY parameter specifies the vertical pixel offset of the region to
write relative to the destination buffer starting coordinate. The offset must
be within the height of the destination buffer.

The SizeX parameter specifies the width of the region to be copied, starting
from the specified offset (SrcOffX, DestOffX).

MbufCopyColor2d 259

The SizeY parameter specifies the height of the region to be copied, starting
from the specified offset (SrcOffY, DestOffY).

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyColor(), MbufCopyCond(),
MbufCopyMask()

260 MbufCopyCond

MbufCopyCond

Synopsis Copy conditionally the source buffer to the destination buffer.

Format void MbufCopyCond(SrcBufId, DestBufId, CondBufId,
 Condition, CondValue)

Description This function copies the source buffer data to the destination buffer,
modifying only those pixels of the destination buffer that have a
corresponding pixel in the conditional buffer that satisfies the specified
condition. Other pixels are unchanged. If the source and destination buffers
are of different data types, MIL converts the data automatically.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers. If the source buffer depth is greater
than that of the destination, the most-significant bits are truncated when
the data is copied to the destination. If the destination depth is greater than
that of the source, the source data is zero or sign-extended (depending on
the type of the source) when copied to the destination. For example, the data
is zero-extended when copying an 8-bit unsigned buffer to a 16-bit unsigned
buffer.

The CondBufId parameter specifies the identifier of the condition buffer.

Note that if a one-band condition buffer is used with a three-band
destination buffer, the one band of the condition buffer will be used for each
destination band.

MIL_ID SrcBufId; Source buffer identifier

MIL_ID DestBufId; Destination buffer identifier
MIL_ID CondBufId; Condition buffer identifier

long Condition; Processing condition
double CondValue; Condition value

MbufCopyCond 261

The Condition parameter specifies the condition for which the condition
buffer is tested. This parameter can be set to one of the following:

The CondValue parameter specifies the pixel value for the specified
condition. Even though this value is of type ‘ double’, it is treated as if it had
the same type and depth as the condition buffer. If M_DEFAULT is used,
CondValue is ignored. If the condition buffer is binary, this value must be
0 or 1. If the condition buffer is three bands, this value will be used for each
band.

If the source buffer, destination buffer, and condition buffer are 8-bit
unsigned, and the condition buffer is a 3-band buffer, then the CondValue
parameter can also use the RGB macro:

M_RGB888(red component, green component, blue component)

This allows you to specify a color value for each band in the condition buffer.

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyMask()

M_EQUAL Modify destination buffer pixels corresponding to
condition buffer pixels that are equal to CondValue.

M_NOT_EQUAL Modify destination buffer pixels corresponding to
condition buffer pixels that are not equal to
CondValue.

M_DEFAULT Modify destination buffer pixels corresponding to
condition buffer pixels that are non-zero.

262 MbufCopyMask

MbufCopyMask

Synopsis Copy buffer with mask.

Format void MbufCopyMask(SrcBufId, DestBufId, MaskValue)

Description This function copies the specified source buffer data to the specified
destination buffer, modifying only the bits of the destination that have a
non-zero corresponding bit in the mask.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The MaskValue parameter specifies the mask value. Even though this
value is of type ’long’, it is treated as if it had the same depth as the
destination buffer; the most-significant bits that are not required are
ignored. If the destination buffer is binary, the value must be 0 or 1.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Status Not available on floating-point buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyCond()

MIL_ID SrcBufId; Source buffer identifier

MIL_ID DestBufId; Destination buffer identifier
long MaskValue; Mask value to apply to the destination buffer

MbufCreate2d 263

MbufCreate2d

Synopsis Create a two-dimensional data buffer.

Format MIL_ID MbufCreate2d(SystemId, SizeX, SizeY,
Type, Attribute, ControlFlag, Pitch,
DataPtr, BufIdPtr)

Description This function creates a two-dimensional data buffer that maps to a
user-specified data array and associates it with a specific MIL system. This
function should be used with caution because, when using physical
addresses, they provide direct manipulation of any of your PC’s
memory mapped devices; when using logical addresses, memory
protection errors could result. It is generally better to leave buffer
allocation, data loading, and memory control to MIL (MbufAlloc2d(),
MbufGet2d(), MbufPut2d()), since MIL might require special memory
attributes (such as non-paged memory) or alignment in order to associate
the buffer with a particular target system.

The appropriate memory must be allocated by the user before calling
MbufCreate2d() and freed when no longer required, after calling
MbufFree().

The SystemId parameter specifies the MIL system with which the buffer
will be associated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system with which to
associate the buffer (it can be the Host system or any already allocated
system).

MIL_ID SystemId; System identifier

long SizeX; X dimension
long SizeY; Y dimension

long Type; Data type and data depth
long Attribute; Buffer attributes

long ControlFlag; Creation control flag
long Pitch; Value of pitch if necessary

void *DataPtr; Pointer to data
MIL_ID *BufIdPtr; Storage location for buffer identifier

264 MbufCreate2d

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth. Express the depth in bits and give the data range as one of the
following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter defines the buffer usage. This parameter should
be set to one of the following:

When selecting an M_IMAGE attribute, it should be set to M_IMAGE +
specifier. For example, to create an image buffer that can be processed and
displayed, you should set the Attribute parameter to M_IMAGE + M_DISP.
The specifier can be one or more of the following:

Compressed buffers should not be used as the destination buffer of a MIL
function. If a buffer with an M_COMPRESS specifier is used as a source buffer
for an operation, the data will be decompressed depending on the attributes
of the destination buffer.

Data Type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

M_IMAGE Image data.
M_LUT Lookup table.

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data from input devices. To

specify this attribute, the memory must usually be physically
contiguous, non-paged memory.

M_COMPRESS An image buffer that can hold compressed data. See
MbufAlloc...() for a list of compression specifiers. Note that a
buffer with this attribute cannot have the M_SIGNED data type.

MbufCreate2d 265

You must specify the appropriate internal storage format of the buffer; MIL
needs this information to manipulate the data.

The ControlFlag parameter specifies the physical nature of the buffer. It
can be set to one of the following:

The Pitch parameter specifies the pitch in pixels or bytes (as determined
by ControlFlag) or M_DEFAULT. The pitch is the length of the buffer’s
memory (not data) line.

The DataPtr parameter is a pointer to the data array to which to map the
created MIL buffer.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufCreate2d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

This function is optimized for packed binary buffers.

Board-dependent location specifiers:
M_PAGED Buffer is in pageable memory.
M_NON_PAGED Buffer is in non-pageable memory.

Board-dependent internal storage format specifiers:
M_FLIP The buffer is top down (DIB).
M_NO_FLIP The buffer is top up.

ControlFlag Description
M_DEFAULT Same as +M_PITCH. The pitch is the width (size X) of the

buffer.
M_HOST_ADDRESS +M_PITCH DataPtr is the Host address of the data buffer. The

pitch is in pixels.
M_HOST_ADDRESS
+M_PITCH_BYTE

DataPtr is the Host address. The pitch is in bytes.

M_PHYSICAL_ADDRESS
+M_PITCH

DataPtr is the physical address of the data buffer in
memory. The pitch is in pixels.

M_PHYSICAL_ADDRESS
+M_PITCH_BYTE

DataPtr is the physical address of the data buffer. The
pitch is in bytes.

266 MbufCreate2d

Return value The returned value is the buffer identifier. If allocation fails, an identifier
of 0 is returned.

See also MbufAlloc2d(), MbufGet2d(), MbufPut2d(), MbufFree()

MbufCreateColor 267

MbufCreateColor

Synopsis Create a color data buffer.

Format MIL_ID MbufCreateColor(SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, ControlFlag,
Pitch,ArrayOfDataPtr, BufIdPtr)

Description This function creates a color data buffer that maps to a user-specified data
array and associates it with a specific MIL system. This function should
be used with caution because, when using physical addresses, they
provide direct manipulation of any of your PC’s memory mapped
devices; when using logical addresses, memory protection errors
could result. It is generally better to leave buffer allocation, data loading,
and memory control to MIL (MbufAllocColor(), MbufGetColor(),
MbufPutColor()), since MIL might require special memory attributes
(such as non-paged memory) or alignment in order to associate the buffer
with a particular target system. MbufInquire() can be used to get the
pointer to a MIL allocated buffer.

The appropriate memory must be allocated by the user before calling
MbufCreateColor() and freed when no longer required, after calling
MbufFree().

The SystemId parameter specifies the MIL system with which the buffer
will be associated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify

MIL_ID SystemId; System identifier

long SizeBand; Number of color bands
long SizeX; X dimension

long SizeY; Y dimension
long Type; Data type and data depth per band

long Attribute; Buffer attributes
long ControlFlag; Creation control flag

long Pitch; Value of pitch, if necessary
void **ArrayOfDataPtr; Array of data buffer pointers

MIL_ID *BufIdPtr; Storage location for buffer identifier

268 MbufCreateColor

M_DEFAULT, MIL will select the most appropriate system with which to
associate the buffer (it can be the Host system or any already allocated
system).

The SizeBand parameter specifies the number of (x,y) surfaces (also called
color bands) that the buffer should have in order to represent the color
components of an object. When acquiring or processing monochrome images,
the buffer requires only one color band. For RGB color images, it requires
three color bands. The possible range for this parameter is 1 to n. However,
there are generally either 1 or 3 bands.

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth per band. Express the depth in bits and give the data range as
one of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter specifies the buffer usage. This parameter should
be set to M_LUT, or to M_IMAGE + specifier. For example, to create an image
buffer that can be processed and displayed, you should set the Attribute
parameter to M_IMAGE + M_DISP. The specifier can be one or more of the
following:

Data Type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data from input devices. To specify

this attribute, the memory must usually be physically contiguous,
non-paged memory.

M_COMPRESS An image buffer that can hold compressed data. See
MbufAllocColor() for a list of compression specifiers. Note that a
buffer with this attribute cannot have the M_SIGNED data type.

MbufCreateColor 269

Compressed buffers should not be used as the destination buffer of a MIL
function. If a buffer with an M_COMPRESS specifier is used as a source buffer
for an operation, the data will be decompressed depending on the attributes
of the destination buffer.

You must specify the appropriate internal storage format of the buffer; MIL
needs this information to manipulate the data. For example, you do not want
MIL to interpret a packed data buffer as a planar.

For the following specifiers, the buffer must be an 8-bit multi-band buffer.
See MIL/MIL-Lite Board-Specific Notes to verify which formats are
supported on your board.

Note that it might be slower to use buffers that have been forced with one
of these attributes. Although there is no right or wrong storage format to
use, certain operations are optimized for some formats.

Board-dependent location specifiers:
M_PAGED Buffer is in pageable memory.
M_NON_PAGED Buffer is in non-pageable memory.

Board-dependent internal storage format specifiers:
M_FLIP The buffer is top down (DIB).
M_NO_FLIP The buffer is top up.
M_PACKED The buffer bands are packed.
M_PLANAR The buffer bands are planar.

Board-dependent internal storage format specifiers:
M_RGB15+M_PACKED 16-bit packed pixels (XRGB 1:5:5:5). Note that when

accessing an M_RGB15+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits are set
to 0.

M_RGB16+M_PACKED 16-bit packed pixels (RGB 5:6:5). Note that when
accessing an M_RGB16+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits are set
to 0.

M_BGR24+M_PACKED 24-bit (BGR) packed pixels.
M_BGR32+M_PACKED 32-bit (BGR) packed pixels.
M_RGB24+M_PLANAR 24-bit (RGB) planar pixels
M_YUV9+M_PLANAR YUV9 planar standard.
M_YUV12+M_PLANAR YUV12 planar standard.

270 MbufCreateColor

The ControlFlag parameter specifies the physical nature of the buffer. It
can be set to one of the following:

The Pitch parameter specifies the pitch in pixels or bytes (as determined
by ControlFlag) or M_DEFAULT. The pitch is the number of pixels or bytes
(as specified by the ControlFlag) between the beginnings of any two
adjacent lines of the buffer data. Note that when creating an
M_BGR24 + M_PACKED buffer, you should use M_PITCH_BYTE instead of
M_PITCH because the latter might not be able to take into account internal
padding.

The ArrayOfDataPtr parameter is the address of an array of pointers.
These pointers address the data buffers to which to map the created MIL
buffer. When pointing to a planar buffer, one pointer per band must be
provided. Pointers to a 3-band planar buffer must be ordered R-G-B or Y-U-V
in the array. When pointing to a single-band buffer or a packed buffer, a
pointer to the packed data must be provided.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufCreateColor() function
also returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

This function is optimized for packed binary buffers.

M_YUV16+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_UYVY+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_YUYV+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV24+M_PLANAR YUV24 planar standard.

Board-dependent internal storage format specifiers:

ControlFlag Description
M_DEFAULT Same as +M_PITCH. The pitch is the width (size X) of the

buffer.
M_HOST_ADDRESS + M_PITCH The data pointer is the Host address of the data buffer.

The pitch is in pixels.
M_HOST_ADDRESS
+M_PITCH_BYTE

The data pointer is the Host address. The pitch is in
bytes.

M_PHYSICAL_ADDRESS
+M_PITCH

The data pointer is the physical address of the data
buffer in memory. The pitch is in pixels.

M_PHYSICAL_ADDRESS
+M_PITCH_BYTE

The data pointer is the physical address of the data
buffer in memory. The pitch is in bytes.

MbufCreateColor 271

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufAllocColor(), MbufGetColor(), MbufPutColor(), MbufFree()

272 MbufDiskInquire

MbufDiskInquire

Synopsis Inquire about the buffer data in a file.

Format long MbufDiskInquire(FileName, InquireType, UserVarPtr)

Description This function inquires about the buffer data in the specified file on disk.

The FileName parameter specifies the file name. Note, an error occurs if
the file does not have a known file format or the file format is not supported.

The supported file types include all the formats supported by the
MbufExport() and MbufExportSequence() functions. Since a "RAW"
data file does not have any information regarding size or type, you can only
use MbufDiskInquire() to determine the file format of this type of file.

The InquireType parameter specifies the parameter about which to
inquire. This parameter can be set to one of the following values:

MIL_TEXT_PTR FileName; File name

long InquireType; Type of information about which to
inquire

void *UserVarPtr; Storage location for inquiry result

InquireType Description
M_SIZE_X Width of the data in the file.
M_SIZE_X+M_LUT Width of the LUT associated with the image in the

file. When there is no LUT associated with the
image, returns M_INVALID.

M_SIZE_Y Height of the data in the file.
M_SIZE_BAND Number of color bands in the file.
M_SIZE_BAND+M_LUT Number of bands of the LUT associated with the

image in the file. When there is no LUT associated
with the image, returns M_INVALID.

M_TYPE File data type and depth (size in bits + M_SIGNED,
M_UNSIGNED or M_FLOAT).

M_SIZE_BIT File data depth in bits.
M_SIGN File data range (M_SIGNED or M_UNSIGNED).
M_ATTRIBUTE File attribute.
M_FILE_FORMAT MIL identifier (MIL_ID) of the file format. See

MbufExport() and MbufExportSequence() for
all supported file formats.

MbufDiskInquire 273

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MbufDiskInquire()
function also returns the requested information, you can set this parameter
to M_NULL.

The UserVarPtr parameter should be a pointer to a long. Certain
exceptions apply when InquireType is set to one of the following:

■ When M_FILE_FORMAT is specified, this parameter should be a pointer
to a MIL_ID.

■ When M_ASPECT_RATIO or M_FRAME_RATE is specified, this parameter
should be a pointer to a double value.

Return value The returned value is the value that represents the setting for the requested
information, cast to long. If the requested information is not available,
M_INVALID is returned.

See also MbufLoad(), MbufImport()

M_LUT_PRESENT Presence of LUT data in the file. (M_YES or M_NO)
M_ASPECT_RATIO Aspect ratio of the image in the file. (default is 1:1)
M_NUMBER_OF_IMAGES Number of images in an *.avi file.
M_FRAME_RATE Frame rate (number of images/second) of an *.avi

file.
M_COMPRESSION_TYPE Returns the compression type of the image in the file.

Returns M_NULL if the image is not compressed (for
example, in a BMP file format). See MbufAllocColor()
for all possible compression formats.

M_OFFSET_CENTER_Y Offset center Y coordinate.

InquireType Description

274 MbufExport

MbufExport

Synopsis Export a data buffer to a file.

Format void MbufExport(FileName, FileFormat, SrcBufId)

Description This function exports a data buffer to a file, using the specified output file
format.

Note, you can also save a buffer in an M_MIL file format, using MbufSave().
The M_MIL file format is TIFF compatible.

To export an image with a LUT (color palette), associate the LUT to the
image, using MbufControl(). Upon export, the image is saved with its
associated color palette (MIM, TIFF and BMP file formats).

If you are exporting uncompressed data to a file with an M_JPEG_xx file
attribute (the FileFormat), this function will automatically compress the
data, according to the file format. The buffer does not need an M_COMPRESS
attribute. If you are exporting compressed data to an uncompressed file
format, this function will automatically decompress the data.

The FileName parameter specifies the name of the file in which to store
the data buffer. If the file already exists, it will be overwritten.

The FileFormat parameter specifies the file conversion format. This
parameter can be set to one of the following:

MIL_TEXT_PTR FileName; Destination file name

long FileFormat; File format
MIL_ID SrcBufId; Source data buffer identifier

FileFormat Description
M_MIL Save the buffer contents in MIL file format (a regular

TIFF 6.0 file format with extra information included
in the comment field. It uses TIFF "chunky" mode to
save color images.)

M_TIFF Save the buffer contents in TIFF file format (only
available for image buffers and saved in "chunky"
mode for color images). The TIFF file format that is
used respects the TIFF 6.0 specification.

M_BMP Save the buffer contents in BMP file format. The
BMP file format that is used is the standard
Windows format.

MbufExport 275

Note that, except for the M_MIL and M_RAW file formats, the source buffer
must have an M_IMAGE attribute.

If you are saving a non 8-bit buffer in M_BMP, M_JPEG_LOSSY,
M_JPEG_LOSSY_RGB, or M_JPEG_LOSSY_INTERLACED format, only the 8
least-significant bits are saved. This is because these formats are restricted
to 8 bits per band. If you are saving a non 8-bit or a non 16-bit buffer in the
M_JPEG_LOSSLESS or M_JPEG_LOSSLESS_INTERLACED format, only the
8-least significant or 16-least significant bits, respectively, are saved.

By default, most color buffers are saved in packed (chunky) format (in
accordance with TIFF 6.0 specifications). Color binary buffers are saved in
a 1-bit per pixel format (data is stored in a 3-band, packed binary format).
When a color buffer is saved in a raw file format, its bands are saved in a
planar format (one band after another). Note, however, that to save a color
image in a planar, rather than a packed mode, M_PLANAR can be added to
the M_MIL or M_TIFF file formats, (for example, M_TIFF+M_PLANAR).

The SrcBufId parameter specifies the identifier of the data buffer to save.

M_JPEG_LOSSLESS Save the buffer contents in a JPEG lossless file
format. If the buffer is 3-band and does not have an
M_COMPRESS attribute, the data will be stored in
RGB format.

M_JPEG_LOSSY Save the buffer contents in a JPEG lossy file format.
If the buffer is 3-band and does not have an
M_COMPRESS attribute, the data will be stored in
YUV16 packed format; otherwise, it will be stored in
the same color format as the buffer.

M_JPEG_LOSSLESS_INTERLACED Save an interlaced JPEG lossless image, to a file in
the same compression format. If the buffer is 3-band,
the buffer will be stored in RGB format.

M_JPEG_LOSSY_INTERLACED Save an interlaced JPEG lossy image, to a file in the
same compression format. If the buffer is 3-band, the
data will always be stored in YUV16 packed format.

M_JPEG_LOSSY_RGB Save a 3-band buffer in a JPEG lossy file format and
store the data in RGB format. This attribute is only
applicable to uncompressed image buffers.

M_RAW Save the buffer contents in raw file format. The
contents are dumped directly (byte stream) into the
file and no header is added. If the buffer is
multi-band, all bands are dumped one after the other.

FileFormat Description

276 MbufExport

Note This function is optimized for packed binary buffers.

See also MbufImport(), MbufSave(), MbufLoad(), MbufRestore(),
MbufControl()

MbufExportSequence 277

MbufExportSequence

Synopsis Export a sequence of image buffers to an .avi file.

Format void MbufExportSequence(FileName, FileFormat, BufArrayPtr,
NumberOfImages, FrameRate,
ControlFlag)

Description This function exports a sequence of image buffers to an audio video
interleave (*.avi) file.

The FileName parameter specifies the name of the file in which to export
the image buffers.

The FileFormat parameter specifies the format of the file. This parameter
can be set to one of the following:

MIL_TEXT_PTR FileName; File name

long FileFormat; File format
MIL_ID *BufArrayPtr; Array of image buffer identifiers

long NumberOfImages; Number of image buffers
double FrameRate; Frame rate

long ControlFlag; Control flag

M_AVI_MJPG A standard AVI format used to hold JPEG compressed sequences. When
this format is specified, the image buffers will be in YUV16 packed
format. In addition, image buffers will have a width that is a multiple of
16 pixels. For image buffers that have the M_JPEG_LOSSY compression
type, the height will be a multiple of 8, and less than or equal to 240
pixels. For image buffers that have the M_JPEG_LOSSY_INTERLACED
compression type, the height will be a multiple of 16 pixels, greater than
240 pixels. If the image buffers are not already in this format, MIL will
automatically convert them appropriately. This type of sequence requires
a codec to be supported by Windows Media Player.

M_AVI_DIB An AVI format used to hold non-compressed DIB image buffers. If
necessary, the image buffers will be converted to a non-compressed DIB
format before exporting. This type of sequence is supported by Windows
Media Player.

M_AVI_MIL An AVI format used to hold image buffers in their MIL format. This saves
images in the format in which they are sent to this function. Since the
images are saved "as is", no loss is introduced in the images. This type of
sequence requires a codec to be supported by Windows Media Player.

M_DEFAULT MIL automatically decides the appropriate format.

278 MbufExportSequence

The BufArrayPtr parameter specifies the address of the array containing
the MIL identifiers of the image buffers to export.

The NumberOfImages parameter specifies the number of image buffers
to export. If the supplied array is larger than this number, the remaining
buffer identifiers are ignored.

The FrameRate parameter specifies the frame rate (number of image
buffers/second) of the sequence.

The ControlFlag parameter specifies whether to append the image buffers
to the *.avi file, if the file already exists, or overwrite the file. This parameter
can be set to one of the following:

See also MbufImportSequence()

M_DEFAULT Overwrite the file. The file will be opened, written into, and then
the file will be closed.

M_OPEN Open the AVI file for writing, and set the pointer to the beginning
of the file. If M_OPEN+M_APPEND is specified, the file is opened
and the file pointer is set to the end of the file. BufArrayPtr,
NumberOfImages, and FrameRate should be set to M_NULL.

M_WRITE Write the specified number of images in the files starting from the
current file pointer position. After the write operation, the file
pointer is left at the end of the file, ready for the next M_WRITE
operation. BufArrayPtr, NumberOfImages, and FrameRate
should be set to the appropriate values.

M_CLOSE Close the AVI file. BufArrayPtr, NumberOfImages, and
FrameRate should be set to M_NULL.

M_APPEND Append the image buffers to the file. The file will be opened, the
specified images will be appended, and then the file will be closed.

MbufFree 279

MbufFree

Synopsis Free a data buffer.

Format void MbufFree(BufId)

Description This function deallocates a previously allocated data buffer. The memory
reserved for the specified buffer is released.

Child buffers associated to a parent buffer must be deallocated, using
MbufFree(), prior to deallocating the parent buffer.

The BufId parameter specifies the identifier of the data buffer to deallocate.

See also MbufAlloc1d(), MbufAlloc2d(), MbufAllocColor(), MbufChild1d(),
MbufChild2d(), MbufChildColor()

MIL_ID BufId; Buffer identifier to deallocate

280 MbufGet

MbufGet

Synopsis Get data from a buffer and place it in a user-supplied array.

Format void MbufGet(SrcBufId, UserArrayPtr)

Description This function copies data from a specified MIL source buffer to a
user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy source buffer data. Ensure that the user array is large enough
to accommodate the data from the source buffer. MbufGet() assumes that
the array is of the same data type and depth as the source buffer’s bands.

Note, for multi-band buffers, MbufGet() behaves like
MbufGetColor(SrcBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr).
Refer to MbufGetColor() for more details.

Note This function is optimized for packed binary buffers.

See also MbufGet1d(), MbufGet2d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier

void *UserArrayPtr; Destination user array

MbufGetColor 281

MbufGetColor

Synopsis Get data from one or all bands of a buffer and place it in a user-supplied
array.

Format void MbufGetColor(SrcBufId, DataFormat, Band, UserArrayPtr)

Description This function copies data from one or all color bands of a specified MIL
source buffer to a user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer. The
internal data format of the source buffer need not match the specified data
format of the user-supplied array; an internal conversion will be performed
if necessary. Note, however, if the formats do match the operation will be
much faster.

The DataFormat parameter specifies the data format to use to save the
data in the user array. Note that Sx and Sy denote the source width and
height, respectively. This parameter must be set to one of the following
values:

MIL_ID SrcBufId; Source buffer identifier

long DataFormat; Data format of the user array
long Band; Color band of source buffer

void *UserArrayPtr; Destination user array

DataFormat Description
M_SINGLE_BAND Copy a single color band. The user array must be of the same

type as the source buffer and have a size of Sx x Sy.
M_BGR24+M_PACKED Copy three bands in an interleaved manner (BGRBGR). The

source buffer must be a three-band, 8-bit buffer and the user
array must have a size of Sx x Sy x 3 bytes (Sx x Sy x 3char).

M_BGR32+M_PACKED Copy three bands in an interleaved manner (BGRXBGRX).
The source buffer must be a three-band, 8-bit buffer and the
user array must have a size of Sx x Sy x 4 bytes (Sx x Sy x
long).

M_RGB15+M_PACKED Copy three bands in an interleaved manner (RGB 5:5:5). The
source buffer must be a three-band, 8-bit buffer and the user
array must have a size of Sx x Sy x 2 bytes (Sx x Sy x 2
unsigned char).

282 MbufGetColor

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter. Note that for the M_PLANAR and
M_SINGLE_BAND data formats, the M_FLIP flag is not supported.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to n-1 (number of bands of the
source buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The UserArrayPtr parameter specifies the address of the user array in
which to copy data from the source buffer. Ensure that the user array is
large enough to accommodate the data from the source buffer in the format
specified.

Note This function is optimized for packed binary buffers.

See also MbufGet(), MbufGet1d(), MbufGet2d(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

M_RGB16+M_PACKED Copy three bands in an interleaved manner (RGB 5:6:5). The
source buffer must be a three-band, 8-bit buffer and the user
array must have a size of Sx x Sy x 2 bytes (Sx x Sy x 2
unsigned char).

M_PLANAR Copy the bands one after the other (RRR...GGG...BBB...). The
user array must be the same data type as the source buffer
and have a size of Sx x Sy x number of color bands of the
source buffer, where Sx and Sy denote the source width and
height, respectively. This format is to be used when copying
from all color bands of the source buffer.

DataFormat Description

M_RED Copy from the red color band.
M_GREEN Copy from the green color band.
M_BLUE Copy from the blue color band.
M_ALL_BAND Copy from all color bands.

MbufGetColor2d 283

MbufGetColor2d

Synopsis Get data from a region of one or all bands of a buffer and place it in a
user-supplied array.

Format void MbufGetColor2d(SrcBufId, DataFormat, Band, OffX, OffY,
SizeX, SizeY, UserArrayPtr)

Description This function copies data from a specific region of one or all color bands of
a specified MIL source buffer to a user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer. The
internal data format of the source buffer need not match the specified data
format of the user-supplied array; an internal conversion will be performed
if necessary. Note however, if the formats do match the operation will be
much faster.

The DataFormat parameter specifies the data format to use to save the
data in the user array. Note that Sx and Sy denote the source width and
height, respectively. This parameter must be set to one of the following
values:

MIL_ID SrcBufId; Source buffer identifier

long DataFormat; Data format of the user array
long Band; Color band of source buffer

long OffX; X pixel offset relative to the source buffer
long OffY; Y pixel offset relative to the source buffer

long SizeX; Source buffer region width
long SizeY; Source buffer region height

void *UserArrayPtr; Destination user array

DataFormat Description
M_SINGLE_BAND Copy a single color band. The user array must be of the

same type as the source buffer and have a size of Sx x Sy.
M_BGR24+M_PACKED Copy three bands in an interleaved manner (BGRBGR). The

source buffer must be a three-band, 8-bit buffer and the user
array must have a size of Sx x Sy x 3 bytes (Sx x Sy x 3char).

M_BGR32+M_PACKED Copy three bands in an interleaved manner (BGRXBGRX).
The source buffer must be a three-band, 8-bit buffer and the
user array must have a size of Sx x Sy x 4 bytes (Sx x Sy x
long).

284 MbufGetColor2d

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter. Note that for the M_PLANAR and
M_SINGLE_BAND data formats, the M_FLIP flag is not supported.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to n-1 (number of bands of the
source buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets (relative to the top-left source buffer coordinate) of the source buffer
region in which to get the data.

The SizeX and SizeY parameters specify the width and height of the source
buffer region in which to get the data.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data. Ensure that there are enough entries in the user
array to receive the data of the specified source buffer region.

See also MbufGet(), MbufGet1d(), MbufGet2d(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor(), MbufPutColor2d()

M_RGB15+M_PACKED Copy three bands in an interleaved manner (RGB 5:5:5).
The source buffer must be a three-band, 8-bit buffer and the
user array must have a size of Sx x Sy x 2 bytes (Sx x Sy x 2
unsigned char).

M_RGB16+M_PACKED Copy three bands in an interleaved manner (RGB 5:6:5).
The source buffer must be a three-band, 8-bit buffer and the
user array must have a size of Sx x Sy x 2 bytes (Sx x Sy x 2
unsigned char).

M_PLANAR Copy the bands one after the other (RRR...GGG...BBB...).
The user array must be the same type as the source buffer
and have a size of Sx x Sy x number of color band of the
source buffer. This format is to be used when copying all
color bands of the source buffer.

DataFormat Description

M_RED Copy from the red color band.
M_GREEN Copy from the green color band.
M_BLUE Copy from the blue color band.
M_ALL_BAND Copy from all color bands.

MbufGetHookInfo 285

MbufGetHookInfo

Synopsis Get information about a hook event.

Format long MbufGetHookInfo(BufferId, EventId, InquireType,
UserVarPtr)

Description This function allows you to get information about the event that caused the
hook function to be called. MbufGetHookInfo() should only be called
within the scope of a buffer hook-handler function (see
MbufHookFunction()).

The BufferId parameter specifies the identifier of the buffer.

The EventId parameter is the buffer event identifier received by the
hook-handler function (see MbufHookFunction()).

The InquireType parameter specifies the type of information about which
to inquire. If the hook-handler function was called with a HookType
parameter equal to M_MODIFIED_BUFFER, the supported value for
InquireType is:

MIL_ID BufferId; Buffer identifier

MIL_ID EventId; Identifier received by the hook-handler
function

long InquireType; Type of information which is inquired
void MPTYPE *UserVarPtr; Storage location for requested information

InquireType Description
M_MODIFIED_BUFFER +
M_BUFFER_ID

Writes the MIL ID of the modified buffer in the storage
location pointed to by UserVarPtr.

M_MODIFIED_BUFFER +
M_REGION_OFFSET_X

Writes the X-offset of the modified region (of the buffer) in
the storage location pointed to by UserVarPtr.

M_MODIFIED_BUFFER +
M_REGION_OFFSET_Y

Writes the Y-offset of the modified region (of the buffer) in the
storage location pointed to by UserVarPtr.

M_MODIFIED_BUFFER +
M_REGION_SIZE_X

Writes the width of the modified region (of the buffer) in the
storage location pointed to by UserVarPtr.

M_MODIFIED_BUFFER +
M_REGION_SIZE_Y

Writes the height of the modified region (of the buffer) in the
storage location pointed to by UserVarPtr.

286 MbufGetHookInfo

The UserVarPtr parameter specifies the address of the variable in which
to write the requested information.

Return value Returns null (M_NULL) on success, and returns a non-null (!M_NULL) value
on failure, without logging any errors in the application.

See also MbufHookFunction()

MbufGetLine 287

MbufGetLine

Synopsis Read the pixels along a specified theoretical line, count the pixels, and store
them in a user-defined array.

Format void MbufGetLine(ImageBufId, StartX, StartY, EndX, EndY,
 Mode, NbPixelsPtr, UserArrayPtr)

Description This function reads the series of pixels between specified coordinates
(theoretical line) in a specified source image and stores the pixels in a
user-defined array. The Bresenham algorithm is used to determine the
theoretical line.

The ImageBufId parameter specifies the identifier of the source image
buffer. This must be a single-band (monochrome) buffer.

The StartX and StartY parameters specify the horizontal and vertical pixel
offsets of the starting position of the line, relative to the top-left pixel of the
source buffer.

The EndX and EndY parameters specify the horizontal and vertical pixel
offsets of the finishing position of the line, relative to the top-left pixel of the
source buffer.

The Mode parameter specifies the operation mode. This parameter must
be set to M_DEFAULT.

The NbPixelsPtr parameter specifies the address of the variable in which
to write the number of pixels found along the theoretical line. You can set
this parameter to M_NULL if you don’t want this value to be evaluated.

MIL_ID ImageBufId; Image buffer identifier

long StartX; X start position of the line
long StartY; Y start position of the line

long EndX; X end position of the line
long EndY; Y end position of the line

long Mode; Operation mode
long *NbPixelsPtr; Number of pixels

void *UserArrayPtr; Destination user array

288 MbufGetLine

The UserArrayPtr parameter specifies the address of the user array in
which to store the pixels from the image buffer. MbufGetLine() assumes
that the array is of the same data type as the source buffer. Ensure that the
user array is large enough to accommodate the data to be stored. To
determine the required size of the array, you can set this parameter to
M_NULL and pass a non-null address to NbPixelsPtr. In this case, nothing
is read from the image buffer.

See also MbufPutLine()

MbufGet1d 289

MbufGet1d

Synopsis Get data from a 1D area of a buffer and place it in a user-supplied array.

Format void MbufGet1d(SrcBufId, OffX, SizeX, UserArrayPtr)

Description This function copies data from a specified one-dimensional area of a MIL
source buffer to a user-supplied array.

Note, for multi-band buffers, this function linearly copies the data from the
one-dimensional region of each band (RRR...GGG...BBB...).

The SrcBufId parameter specifies the identifier of the source buffer.

The OffX parameter specifies the horizontal offset (in pixels) of the required
area, relative to the top-left pixel of the source buffer.

The SizeX parameter specifies the width of the required area of the source
buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data from the source buffer. Ensure that the user array
is large enough to accommodate the data to be copied from the source buffer.
MbufGet1d() assumes that the array is of the same data type as the source
buffer.

See also MbufGet(), MbufGet2d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier

long OffX; X offset relative to source buffer origin
long SizeX; Width of source buffer area from which to get data

void *UserArrayPtr; Destination user array

290 MbufGet2d

MbufGet2d

Synopsis Get data from a 2d area of a buffer and place it in a user-supplied array.

Format void MbufGet2d(SrcBufId, OffX, OffY, SizeX, SizeY, UserArrayPtr)

Description This function copies data from a specified two-dimensional region of a MIL
source buffer to a user-supplied array.

Note, for multi-band buffers, this function linearly copies the data from the
specified two-dimensional region of each band (RRR...GGG...BBB...).

The SrcBufId parameter specifies the identifier of the source buffer.

The OffX parameter specifies the horizontal offset (in pixels) of the required
area, relative to the top-left pixel of the source buffer. The OffY parameter
specifies the vertical offset.

The SizeX and SizeY parameters specify the width and height of the
required area of the source buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data from the source buffer. Ensure that the user array
is large enough to accommodate the data to be copied. MbufGet2d()
assumes that the array is of the same data type as the source buffer.

See also MbufGet(), MbufGet1d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier

long OffX; X pixel offset relative to source buffer region
long OffY; Y pixel offset relative to source buffer region

long SizeX; Width of required data area
long SizeY; Height of required data area

void *UserArrayPtr; Source user array

MbufHookFunction 291

MbufHookFunction

Synopsis Hook a function to a buffer event.

Format void MbufHookFunction(BufferId, HookType, HookHandlerPtr,
UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified buffer event (for example, a modification to the buffer’s contents).
Once a hook-handler function is defined and hooked to an event, it is
automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MbufHookFunction() for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.

The BufferId parameter specifies the identifier of the buffer.

The HookType parameter specifies the buffer event to which to hook the
function. This parameter can be set to one of the following values. Note that
a hooked function must be unhooked by combining the HookType
parameter with M_UNHOOK.

MIL_ID BufferId; Buffer identifier

long HookType; Type of event to hook
MBUFHOOKFCTPTR HookHandlerPtr; Pointer to the function to call

when the specified buffer event
occurs

void MPTYPE *UserDataPtr; User data pointer

HookType Description
M_MODIFIED_BUFFER Calls the hook-handler function each time the

specified buffer is modified by a MIL function.
M_UNHOOK +
M_MODIFIED_BUFFER

Unhooks the specified function if hooked to an
M_MODIFIED_BUFFER event.

292 MbufHookFunction

The HookHandlerPtr parameter specifies the address of the function that
should be called when the specified event occurs. The hook-handler function
must be declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MBUFHOOKFCTPTR, MFTYPE, and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

See also MbufGetHookInfo()

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of buffer event that generated the call

MIL_ID EventId; Event identifier to pass to MbufGetHookInfo() when
inquiring about the hooked event

void MPTYPE *UserDataPtr; User data pointer that was passed (as UserDataPtr) by
MbufHookFunction()

MbufImport 293

MbufImport

Synopsis Import data from a file into a data buffer.

Format MIL_ID MbufImport(FileName, FileFormat, Operation,
 SystemId, BufIdPtr)

Description This function imports data, of the specified format, from a file into a MIL
data buffer. The buffer can be an existing data buffer, or an automatically
allocated buffer.

Note, you can also import data using MbufLoad() or MbufRestore();
however, these functions try to determine the format from the data rather
than allowing you to specify the data type.

If you are importing uncompressed data into a buffer with an M_COMPRESS
attribute, this function will automatically compress it, according to the
compression settings found in the buffer. If you are importing compressed
data into a buffer with an M_IMAGE attribute (but not an M_COMPRESS
attribute), this function will automatically decompress it. If necessary, the
data in the file will be transformed to fit into the buffer. If you are not sure
what type of compressed data the file contains, use M_DEFAULT as the file
format rather than M_JPEG_xx; the data will be read correctly.

When a buffer is automatically allocated during a restore operation, it is
allocated with the same attributes as the original buffer, with the exception
of M_IMAGE buffers. In the case of an M_IMAGE type buffer, the
MbufImport() function tries to allocate an image buffer so that it
can be used for acquisition (M_GRAB), display (M_DISP) operations. If there
is insufficient appropriate memory to allocate such a buffer, it allocates one
that can be used in all of the above operations except for acquisition
(M_GRAB). Note that the maximum (total) number of grab (M_GRAB)
buffers that can be allocated is restricted by the total amount of DMA
memory that was specified at the time of installation. For systems with
on-board processors, the total number of M_GRAB buffers is limited by the
amount of on-board memory.

MIL_TEXT_PTR FileName; Source file name

long FileFormat; File format
long Operation; Import operation

MIL_ID SystemId; System identifier
MIL_ID *BufIdPtr; Buffer identifier (returned or given)

294 MbufImport

When importing a compressed file into an automatically allocated buffer,
the buffer will have an M_COMPRESS attribute.

When importing an image file that has been saved with an associated LUT
(color palette), the LUT is also imported and associated with the resulting
image buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

Similarly, when loading a monochrome image file that has been saved with
an associated LUT (color palette) into a single-band buffer, the LUT is also
imported and associated with the resulting image buffer.

❖ Note that the associated LUT will be automatically selected on the display
(MdispLut()) if the image buffer is selected on a display and the default
LUT has not been overidden by a former call to MdispLut().

When loading an image file that has been saved with an associated LUT
(color palette) into a 3-band 8-bit image buffer, the LUT is automatically
applied to the data to generate 3-band image data. In this case, a LUT buffer
is not created and, therefore, is not associated to the 3-band 8-bit buffer.

Using MbufDiskInquire(), you can inquire about the dimensions of a
buffer saved in a file (except for RAW files) without importing it.

After restoring a buffer, we recommend that you check if the operation was
successful, by using MappGetError(), or by verifying that the returned
buffer identifier is not M_NULL.

The FileName parameter specifies the name of the file from which to get
the data.

The FileFormat parameter specifies the file conversion format. This
parameter can be set to one of the following:

M_MIL Import data that is in MIL file format.
M_TIFF Import data that is in TIFF file format (only

available for image buffers). The TIFF 6.0
specification is used.

M_BMP Import data that is in BMP file format (only
available for image buffers). The standard Windows
BMP format is used.

M_RAW Import data that is in RAW file format.
M_JPEG_LOSSLESS Import a JPEG lossless image.
M_JPEG_LOSSY Import a JPEG lossy image.

MbufImport 295

The Operation parameter specifies the import operation. This parameter
can be set to one of the following:

Note, you cannot restore (M_RESTORE) a RAW data file (M_RAW) because
its dimensions are unknown.

The SystemId parameter specifies the system on which the MIL buffer will
be allocated, if M_RESTORE is specified as the operation. This parameter
must be given a valid system identifier or it can be set to M_DEFAULT_HOST.
In the latter case, the default Host system of the current MIL application
is used. You can also specify M_DEFAULT, in which case MIL selects the most
appropriate system on which to allocate the buffer (either the Host system
or any currently allocated system).

Set SystemId to M_NULL if M_LOAD is specified as the operation.

The BufIdPtr parameter specifies the address of the variable that either
gives or receives a data buffer identifier, depending on the setting of the
Operation parameter. When Operation is set to M_RESTORE,
MbufImport() returns the buffer identifier and stores it at the
variable’s specified address. Since MbufImport() also returns the
buffer identifier, you can set this parameter to M_NULL. If allocation fails,
M_NULL is written as the identifier.

M_JPEG_LOSSLESS_INTERLACED Import a JPEG lossless image stored in two separate
fields. If the buffer is 3-band, the buffer will be stored
in RGB format. Only available for image buffers.

M_JPEG_LOSSY_INTERLACED Import a JPEG lossy image stored in two separate
fields. If the buffer is 3-band, the data will always be
stored in YUV16 packed format. Only available for
image buffers.

M_JPEG_LOSSY_RGB Import a 3-band JPEG lossy image that is in RGB
format.

M_DEFAULT Automatically determine the file format. If the file
format is not supported, its data will be treated in
RAW file format.

M_RESTORE Data from the specified file is imported into an automatically
allocated MIL data buffer.

M_LOAD Data from the specified file is imported into a previously allocated
MIL data buffer.

296 MbufImport

When a buffer identifier is given, the buffer must be large enough in depth
and dimensions to hold the data; if not, some data is clipped. For example,
if the data is deeper than the buffer, the most-significant bits of the data
are not written. If, however, the buffer is larger in depth or dimensions than
the data, excess areas are unaffected.

Note that MIL-Lite does not support JPEG 2000 compression, and requires
dedicated hardware for JPEG compression. This is not a restriction under
MIL.

Return value The returned value is the buffer identifier (for an M_RESTORE operation
only). If allocation fails, M_NULL is returned.

Status This function supports the baseline TIFF 6.0 format for grayscale and RGB
images.

See also MbufDiskInquire(), MbufExport(), MbufSave(), MbufLoad(),
MbufRestore(), MbufControl()

MbufImportSequence 297

MbufImportSequence

Synopsis Import a sequence of images from an *.avi file into separate image buffers.

Format void MbufImportSequence(FileName, FileFormat, Operation,
SystemId, BufArrayPtr, StartImage,
NumberOfImages, ControlFlag)

Description This function imports a sequence of images from an *.avi file into separate
image buffers. MbufImportSequence() can automatically allocate the
necessary buffers or you can use previously allocated buffers. In the latter
case, the BufArrayPtr parameter should point to an array containing the
buffer identifiers. In the former case, MbufImportSequence() will write
the identifiers of the new buffers into the array pointed to by BufArrayPtr.

The FileName parameter specifies the name of the file.

The FileFormat parameter specifies the format of the file. This parameter
can be set to one of the following:

The Operation parameter specifies whether to import the sequence into
automatically allocated buffers or previously allocated buffers. This
parameter can be set to one of the following:

MIL_TEXT_PTR FileName; File name

long FileFormat; File format
long Operation; Operation mode

MIL_ID SystemId; Target system
MIL_ID *BufArrayPtr; Array of image buffer identifiers

long StartImage; Start image
long NumberOfImages; Number of image buffers

long ControlFlag; Control flag

M_AVI_MJPG An AVI format containing compressed images.
M_AVI_DIB An AVI format containing non-compressed images.
M_AVI_MIL An AVI format containing images in their MIL format.
M_DEFAULT MIL automatically determines the file format.

M_LOAD Import the sequence into previously allocated buffers.
M_RESTORE Import the sequence into automatically allocated buffers.

298 MbufImportSequence

The SystemId parameter specifies the system on which to allocate the
buffers for an M_RESTORE operation. This parameter must be set to a valid
system identifier, M_DEFAULT_HOST, or M_DEFAULT. To use the default
Host system of the current MIL application, specify M_DEFAULT_HOST. If
you specify M_DEFAULT, MIL will select the most appropriate system on
which to allocate the buffer (it can be the Host system or any already
allocated system).

For an M_LOAD operation, set the SystemId parameter to M_NULL.

The BufArrayPtr parameter specifies the address of the array containing
the buffer identifiers (for an M_LOAD operation) or the address of the array
in which to store the new buffer identifiers (for an M_RESTORE operation).

For an M_LOAD operation, the destination buffers should be large enough
to hold the imported images. If you are importing compressed images into
buffers with only an M_IMAGE specifier, the images will be automatically
decompressed. If you are importing decompressed images into buffers with
an M_IMAGE+M_COMPRESS specifier, the images will be automatically
compressed.

For an M_RESTORE operation, the destination buffers will be allocated with
an appropriate size and type to hold the images. For example, if you are
importing compressed images, the destination buffers will have an
M_IMAGE+M_COMPRESS specifier. If an M_RESTORE operation fails, zero
will be written for the buffer identifiers.

The StartImage parameter specifies the first image in the sequence to
import. Images start at 0.

The NumberOfImages parameter specifies the number of images, starting
at StartImage, to import. The array pointed to by BufArrayPtr should be
at least as big as this number. Note that you can inquire about the number
of images in an *.avi file using MbufDiskInquire().

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to one of the following:

ControlFlag Description
M_DEFAULT Open the AVI file, read the specified images, and then close the file.
M_OPEN Open the AVI file for reading, and set the pointer to the first image.

BufArrayPtr, NumberOfImages, and StartImage should be set to
M_NULL.

MbufImportSequence 299

See also MbufDiskInquire(), MbufExportSequence()

M_READ Read the specified images in the AVI file, starting at the specified
StartImage position. To read the image at the current read position, set
StartImage to M_DEFAULT. After the read operation, the file pointer is
left at the position of the next image, ready for the next M_READ
operation.

M_CLOSE Close the AVI file after reading, and (re)set the pointer position to the
first image. BufArrayPtr, NumberOfImages, and FrameRate
should be set to M_NULL.

ControlFlag Description

300 MbufInquire

MbufInquire

Synopsis Inquire about a data buffer parameter setting.

Format long MbufInquire(BufId, InquireType, UserVarPtr)

Description This function inquires about a specified MIL buffer parameter setting. This
function is useful, for example, to check the size of a buffer restored from
disk.

The BufId parameter specifies the identifier of the source buffer.

The InquireType parameter specifies the buffer parameter setting about
which to inquire. This parameter can be set to one of the following values:

MIL_ID BufId; Source buffer identifier

long InquireType; Type of information about which to inquire
void *UserVarPtr; Storage location for requested information

InquireType Description
M_SIZE_X Width of the buffer.
M_SIZE_Y Height of the buffer.
M_SIZE_BAND Number of buffer color bands.
M_SIZE_BIT Depth per band, in bits.
M_SIZE_BYTE Size of the buffer, in bytes.
M_TYPE Buffer data type and depth (size in bits +

M_SIGNED, M_UNSIGNED, or M_FLOAT).
M_SIGN Buffer range (M_SIGNED or M_UNSIGNED).
M_ATTRIBUTE Buffer attribute.
M_OWNER_SYSTEM Identifier of the system on which the buffer has

been allocated.
M_OWNER_SYSTEM_TYPE Type of system on which the buffer was allocated.
M_PITCH* The number of pixels between the beginnings of

any two adjacent lines of the buffer data.
M_PITCH_BYTE* The number of bytes between the beginnings of

any two adjacent lines of the buffer data.
*Note: when inquiring the pitch of an M_BGR24 + M_PACKED buffer, you should use
M_PITCH_BYTE instead of M_PITCH because the latter might not be able to take into account
internal padding.

MbufInquire 301

M_HOST_ADDRESS Host pointer to the buffer or M_NULL. If a planar,
3-band buffer is being used, M_NULL will be
returned. However, the Host address can be
determined by allocating a child buffer for the
required band and then using M_HOST_ADDRESS
to determine its Host address. If available, this
pointer can be used to directly access the data of a
MIL buffer with the Host CPU.

M_PHYSICAL_ADDRESS Physical address of the buffer or M_NULL.
Available only for a non-paged buffer mapped to
the Host. This type of buffer is used mostly used
for access by bus masters other than the Host
CPU.

M_PARENT_ID Identifier of parent buffer. (returns same as
BufId if no parent buffer)

M_PARENT_OFFSET_X X offset relative to the parent buffer.
M_PARENT_OFFSET_Y Y offset relative to the parent buffer.
M_PARENT_OFFSET_BAND Band offset relative to the parent buffer.
M_ANCESTOR_ID MIL identifier of the ancestor buffer (returns

same as BufId if no ancestor buffer). An ancestor
buffer is a buffer from which other buffers
originated.
It must have been allocated with MbufAlloc1d(),
MbufAlloc2d(), or MbufAllocColor() and does
not have a parent buffer.

M_ANCESTOR_OFFSET_X X offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_Y Y offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_BAND Band offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_BIT Bit offset relative to the ancestor buffer.

InquireType Description

302 MbufInquire

M_MODIFICATION_COUNT Returns the current value of the modification
counter of the image buffer. The modification
counter is initialized to a number that is unique
to the image buffer and is given its own unique
range. If the image buffer is freed, this number
will not be reassigned to a new image buffer. This
number is incremented by one each time the
image buffer is modified.
If the image buffer is accessed externally, for
example, when using MbufCreateColor() or
MbufCreate2d(), MbufControl() with
M_MODIFIED must be called to indicate that the
image buffer’s contents have been modified.
Calling this function will increment the counter.
This feature is useful for optimization. For
example, you can avoid repeating certain
computations (for example, analysis
computations) if you know that the image buffer
has not been modified. In this case, inquire the
count before the first computation in the
sequence of computations, and then inquire it
again before repeating the same sequence. If no
modifications have been made to the image
buffer, you can avoid repeating the sequence
unnecessarily.

M_ASSOCIATED_LUT Identifier of the LUT buffer associated with the
image buffer. (returns M_DEFAULT if no LUT)

M_NATIVE_ID The native identifier (handle) of the buffer. This
identifier can be used when operating in the
system native library.

M_WINDOW_DDRAW_SURFACE Pointer (LPDIRECTDRAWSURFACE) to the
DirectDraw surface associated with the MIL
buffer (if any) or M_NULL.

M_WINDOW_DIB_HEADER Pointer (LPBITMAPINFO) to the header of the
DIB associated with the MIL buffer (if any) or
M_NULL.

M_WINDOW_DC Windows display context handle (HDC)
(MbufControl()) or M_NULL. This inquire type
must be used with the MbufControl()
M_WINDOW_DC_ALLOC control type.

InquireType Description

MbufInquire 303

M_FORMAT This setting accesses information about the buffer
format. See MbufAlloc...() for all possible return
values. Note, it is also possible to extract the
internal format of the buffer by adding the
M_INTERNAL_FORMAT mask to the resulting
M_FORMAT value.

For M_IMAGE+M_COMPRESS image buffers
(see MbufAlloc...() for possible values):
M_COMPRESSION_TYPE Type of compression. See MbufAlloc...() for

possible values.
M_SIZE_BYTE Size of compressed buffer in bytes. The buffer size

will be zero if the buffer has not been initialized
with data.

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSY or M_JPEG_LOSSY_INTERLACED:
M_Q_FACTOR Quantization factor for JPEG lossy compressions.

Note that for 3-band buffers, only the
quantization factor associated with the first band
is returned.

M_Q_FACTOR_LUMINANCE Quantization factor of the Y band for JPEG lossy
compressions of a YUV image buffer.

M_Q_FACTOR_CHROMINANCE Quantization factor of the U and V bands for
JPEG lossy compressions of a YUV image buffer.

M_QUANTIZATION Identifier of the array buffer containing the
quantization table (for a JPEG lossy compression)
which is associated with the image buffer.
Note that for 3-band buffers, only the identifier of
the array buffer associated with the first band is
returned.

M_QUANTIZATION_LUMINANCE Identifier of the array buffer containing the
quantization table which is associated with the Y
band of a YUV image buffer for JPEG lossy
compressions.

M_QUANTIZATION_CHROMINANCE Identifier of the array buffer containing the
quantization table which is associated with the U
and V bands of a YUV image buffer for JPEG
lossy compressions.

InquireType Description

304 MbufInquire

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSY, M_JPEG_LOSSY_INTERLACED, M_JPEG_LOSSLESS, or
M_JPEG_LOSSLESS_INTERLACED:
M_HUFFMAN_DC Identifier of the array buffer containing the DC

Huffman table which is associated with the image
buffer. For 3-band buffers, only the identifier of
the array buffer associated with the first band is
returned.

M_HUFFMAN_DC_LUMINANCE Identifier of the array buffer containing the DC
Huffman table which is associated with the Y
band of a YUV image buffer.

M_HUFFMAN_DC_CHROMINANCE Identifier of the array buffer containing the DC
Huffman table which is associated with the U and
V bands of a YUV image buffer.

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSLESS, or M_JPEG_LOSSLESS_INTERLACED:
M_PREDICTOR Type of predictor. This inquire type is supported

for JPEG lossless compressions only.
M_RESTART_INTERVAL Number of lines between restart markers (for

JPEG lossless compressions) or number of 8x8
blocks of data between restart markers (for JPEG
lossy compressions).

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSY or M_JPEG_LOSSY_INTERLACED:
M_HUFFMAN_AC Identifier of the array buffer containing the AC

Huffman table which is associated with the image
buffer. For 3-band buffers, only the identifier of
the array buffer associated with the first band is
returned.

M_HUFFMAN_AC_LUMINANCE Identifier of the array buffer containing the AC
Huffman table which is associated with the Y
band of a YUV image buffer.

M_HUFFMAN_AC_CHROMINANCE Identifier of the array buffer containing the AC
Huffman table which is associated with the U and
V bands of a YUV image buffer.

InquireType Description

MbufInquire 305

To extract the internal format of the buffer, use the M_INTERNAL_FORMAT
mask to isolate it from the other flags. For example:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. The variable must be of type
long, except when the InquireType is set to one of the following:

■ M_ASSOCIATED_LUT

■ M_PARENT_ID

■ M_OWNER_SYSTEM

■ M_ANCESTOR_ID

■ M_HUFFMAN...

■ M_QUANTIZATION...

In which case, the UserVarPtr parameter requires a pointer to a MIL_ID.

Since the MbufInquire() function also returns the requested information,
you can set this parameter to M_NULL.

Note MIL-Lite does not support JPEG2000 compression, and requires dedicated
hardware for JPEG compression. This is not a restriction under MIL.

Return value The returned value is the value that represents the setting of the requested
MIL buffer attribute, cast as long, otherwise M_ERROR is returned.

$WHHGT(QTOCV�/DWH+PSWKTG
$WH+F��/A(14/#6�����
KH�

$WHHGT(QTOCV�/A+06'40#.A(14/#6���/A$)4���
]
���
_

306 MbufLoad

MbufLoad

Synopsis Load data from a file into a data buffer.

Format void MbufLoad(FileName, BufId)

Description This function loads data from a file into a previously allocated data buffer.
The function detects the file format from the data.

Note, you can perform the same operation as MbufLoad() using
MbufImport(), which uses the specified file format to open the file instead
of trying to determine the format from the data.

The FileName parameter specifies the name of file from which to load the
data buffer.

The BufId parameter specifies the identifier of the destination buffer. This
buffer must be big enough in depth and dimensions to hold the data; if not,
some data is clipped. For example, if the data is deeper than the buffer, the
most-significant bits of the data are truncated when loaded into the buffer.
If the buffer depth is greater than that of the data, the data is zero or
sign-extended (depending on the data type) when loaded into the buffer. If
the buffer is larger in size than the data, exceeding areas of the buffer are
unaffected.

When loading an image file that was saved with an associated LUT (color
palette), the LUT is also loaded and associated with the destination image
buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

See also MbufImport(), MbufExport(), MbufSave(), MbufRestore(), MbufInquire(),
MbufControl()

MIL_TEXT_PTR FileName; Source file name
MIL_ID BufId; Destination buffer identifier

MbufPut 307

MbufPut

Synopsis Put data from a user-supplied array into a data buffer.

Format void MbufPut(DestBufId, UserArrayPtr)

Description This function copies data from a user-supplied array to a specified MIL
destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the destination buffer. MbufPut() assumes
that the array is of the same data type and depth as the destination buffer’s
bands.

Note, for multi-band buffers, MbufPut() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr). See
MbufPutColor() for more details.

Example mconvol.c

See also MbufPut1d(), MbufPut2d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier

void *UserArrayPtr; Source user array

308 MbufPutColor

MbufPutColor

Synopsis Put data from a user-supplied array into one or all bands of a data buffer.

Format void MbufPutColor(DestBufId, DataFormat, Band, UserArrayPtr)

Description This function copies data from a user-supplied array to one or all bands of
a specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.
The internal data format of the destination buffer need not match the
specified data format of the user-supplied array; an internal conversion will
be performed if necessary. Note, however, if the formats do match the
operation will be much faster.

The DataFormat parameter specifies the data format of the user-supplied
array; this information is required to properly copy the data. Note that Dx
and Dy denote the destination width and height, respectively. This
parameter must be set to one of the following values:

MIL_ID DestBufId; Destination buffer identifier

long DataFormat; Data format of source user array
long Band; Color band in destination buffer

void *UserArrayPtr; Source user array

DataFormat Description
M_SINGLE_BAND Copy to a single color band. The user array must be of the same

type as the destination buffer and have a size of Dx x Dy.
M_BGR24+M_PACKED Copy to three bands in an interleaved manner (BGRBGR). The

destination buffer must be a three-band, 8-bit buffer and the user
array must have a size of Dx x Dy x 3 bytes (Dx x Dy x 3char).

M_BGR32+M_PACKED Copy to three bands in an interleaved manner (BGRXBGRX).
The destination buffer must be a three-band, 8-bit buffer and the
user array must have a size of Dx x Dy x 4 bytes (Dx x Dy x long).

M_RGB15+M_PACKED Copy to three bands in an interleaved manner (RGB 5:5:5). The
destination buffer must be a three-band, 8-bit buffer and the user
array must have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

MbufPutColor 309

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter. Note that for the M_PLANAR and
M_SINGLE_BAND data formats, the M_FLIP flag is not supported.

The Band parameter specifies the index of the color band in which to copy.
This parameter can be set to any index from 0 to (number of bands of the
destination buffer - 1) or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the color band of the destination buffer.

See also MbufPut(), MbufPut1d(), MbufPut2d(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

M_RGB16+M_PACKED Copy to three bands in an interleaved manner (RGB 5:6:5). The
destination buffer must be a three-band, 8-bit buffer and the user
array must have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_PLANAR Copy the bands one after the other (RRR...GGG...BBB...). The
user array must be the same type as the destination buffer and
have a size of Dx x Dy x number of color band of the destination
buffer. This format is to be used when copying to all color bands
of the destination buffer.

DataFormat Description

M_RED Copy to the red color band.
M_GREEN Copy to the green color band.
M_BLUE Copy to the blue color band.
M_ALL_BAND Copy to all color bands.

310 MbufPutColor2d

MbufPutColor2d

Synopsis Put data from a user-supplied array into a region of one or all bands of a
data buffer.

Format void MbufPutColor2d(DestBufId, DataFormat, Band, OffX, OffY,
 SizeX, SizeY, UserArrayPtr)

Description This function copies data from a user-supplied array to a specified region in
one or all bands of a specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.
The internal data format of the destination buffer need not match the
specified data format of the user-supplied array; an internal conversion will
be performed if necessary. Note, however, if the formats do match the
operation will be much faster.

The DataFormat parameter specifies the data format of the user-supplied
array; this information is required to properly copy the data. Note that Dx
and Dy denote the destination width and height, respectively. This
parameter must be set to one of the following values:

MIL_ID DestBufId; Destination buffer identifier

long DataFormat; Data format of source user array
long Band; Color band in destination buffer

long OffX; X pixel offset relative to the parent buffer
long OffY; Y pixel offset relative to the parent buffer

long SizeX; Destination buffer region width
long SizeY; Destination buffer region height

void *UserArrayPtr; Source user array

DataFormat Description
M_SINGLE_BAND Copy to a single color band. The user array must be of the same

type as the destination buffer and have a size of Dx x Dy.
M_BGR24+M_PACKED Copy to three bands in an interleaved manner (BGRBGR). The

destination buffer must be a three-band, 8-bit buffer and the user
array must have a size of Dx x Dy x 3 bytes (Dx x Dy x 3char).

M_BGR32+M_PACKED Copy to three bands in an interleaved manner (BGRXBGRX).
The destination buffer must be a three-band, 8-bit buffer and the
user array must have a size of Dx x Dy x 4 bytes (Dx x Dy x long).

MbufPutColor2d 311

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter. Note that for the M_PLANAR and
M_SINGLE_BAND data formats, the M_FLIP flag is not supported.

The Band parameter specifies the index of the color band in which to copy.
This parameter can be set to any index from 0 to (number of bands of the
destination buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the destination buffer region in which to put the data, relative to
the destination buffer’s top-left pixel.

The SizeX and SizeY parameters specify the width and height of the
destination buffer region in which to put the data.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified region of the destination buffer.

See also MbufPut(), MbufPut1d(), MbufPut2d(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor(), MbufGetColor2d()

M_RGB15+M_PACKED Copy to three bands in an interleaved manner (RGB 5:5:5). The
destination buffer must be a three-band, 8-bit buffer and the user
array must have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_RGB16+M_PACKED Copy to three bands in an interleaved manner (RGB 5:6:5). The
destination buffer must be a three-band, 8-bit buffer and the user
array must have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_PLANAR Copy the bands one after the other (RRR...GGG...BBB...). The
user array must be the same type as the destination buffer and
have a size of Dx x Dy x number of color band of the destination
buffer. This format is to be used when copying to all color bands
(M_ALL_BAND) of the destination buffer.

DataFormat Description

M_RED Copy to the red color band.
M_GREEN Copy to the green color band.
M_BLUE Copy to the blue color band.
M_ALL_BAND Copy to all color bands.

312 MbufPutLine

MbufPutLine

Synopsis Write a specified series of pixels along a specified theoretical line.

Format void MbufPutLine(ImageBufId, StartX, StartY, EndX, EndY,
 Mode, NbPixelsPtr, UserArrayPtr)

Description This function reads a series of pixels from a user-defined array and writes
them to the specified image, along the theoretical line defined by specified
coordinates. The Bresenham algorithm is used to determine the theoretical
line.

The ImageBufId parameter specifies the identifier of the destination
image buffer. This must be a single-band (monochrome) buffer.

The StartX and StartY parameters specify the horizontal and vertical pixel
offsets of the starting position of the line, relative to the top-left pixel of the
source buffer.

The EndX and EndY parameters specify the horizontal and vertical pixel
offsets of the finishing position on the line, relative to the top-left pixel of
the source buffer.

The Mode parameter specifies the operation mode. This parameter must
be set to M_DEFAULT.

The NbPixelsPtr parameter specifies the address of the variable in which
to write the number of pixels found along the theoretical line. You can set
this parameter to M_NULL if you don’t want this value to be evaluated.

MIL_ID ImageBufId; Image buffer identifier

long StartX; X start position on the line
long StartY; Y start position on the line

long EndX; X end position on the line
long EndY; Y end position on the line

long Mode; Operation mode
long *NbPixelsPtr Number of pixels

void *UserArrayPtr; Source user array

MbufPutLine 313

The UserArrayPtr parameter specifies the address of the user array
containing the pixels to insert in the image buffer. MbufPutLine() assumes
that the array is of the same data type as the destination buffer. Ensure
that the user array contains all the pixels to be inserted. To determine the
number of pixel values required, you can set this parameter to M_NULL and
pass a non-null address to NbPixelsPtr. In this case, nothing is written to
the image buffer.

See also MbufGetLine()

314 MbufPut1d

MbufPut1d

Synopsis Put data from a user-supplied array into a 1D area of a buffer.

Format void MbufPut1d(DestBufId, OffX, SizeX, UserArrayPtr)

Description This function copies data from a user-supplied array to a one-dimensional
area of the specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The OffX parameter specifies the horizontal offset of the destination buffer
area in which to put data, relative to the destination buffer’s top-left pixel.

The SizeX parameter specifies the width of the destination buffer area in
which to copy the data (starting from the specified offset OffX).

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified destination buffer area.
MbufPut1d() assumes that the array is of the same data type as the
destination buffer.

Note, for multi-band buffers, MbufPut1d() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr), but
puts the data in the specified one-dimensional region. Refer to
MbufPutColor() for more details.

See also MbufPut(), MbufPut2d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier

long OffX; X pixel offset relative to destination buffer origin
long SizeX; Width of destination buffer area in which to put

data
void *UserArrayPtr; Source user array

MbufPut2d 315

MbufPut2d

Synopsis Put data from a user-supplied array into a 2d area of a buffer.

Format void MbufPut2d(DestBufId, OffX, OffY, SizeX, SizeY, UserArrayPtr)

Description This function copies data from a user-supplied array to a two-dimensional
area of the specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the destination buffer area in which to put the data, relative to
the destination buffer’s top-left pixel.

The SizeX and SizeY parameters specify the width and height of the
destination buffer area in which to copy the data (starting from the specified
offsets OffX and OffY).

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified destination buffer area.
MbufPut2d() assumes that the array is of the same data type as the
destination buffer.

Note, for multi-band buffers, MbufPut2d() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr), but
puts the data in the specified two-dimensional region. Refer to
MbufPutColor() for more details.

See also MbufPut(), MbufPut1d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier

long OffX; X pixel offset relative to destination buffer origin
long OffY; Y pixel offset relative to the destination buffer

origin
long SizeX; Width of destination buffer area in which to put

data
long SizeY; Height of destination buffer area in which to put

data

void *UserArrayPtr; Source user array

316 MbufRestore

MbufRestore

Synopsis Restore data from a file into an automatically allocated data buffer.

Format MIL_ID MbufRestore(FileName, SystemId, BufIdPtr)

Description This function restores the data from the specified file and loads it into an
automatically allocated buffer. It tries to detect the file format from the data.
If the file is in a M_MIL file format, the buffer is allocated with the same
attributes as the original buffer, with the exception of M_IMAGE buffers.

In the case of an M_IMAGE type buffer, the MbufRestore() function tries
to allocate the buffer so that it can be used for acquisition (M_GRAB), display
(M_DISP) operations. If there is insufficient appropriate memory to allocate
such a buffer, it allocates one that can be used in all of the above operations
except for acquisition (M_GRAB). Note that the maximum (total) number of
grab (M_GRAB) buffers that can be allocated is restricted by the total amount
of DMA memory that was specified at the time of installation. For systems
with on-board processors, the total number of M_GRAB buffers is limited by
the amount of on-board memory.

When restoring an image file that was saved with an associated LUT (color
palette), the LUT is also restored and associated with the restored image
buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

After restoring a buffer, we recommend that you check that the operation
was successful by using MappGetError() or by checking that the buffer
identifier returned is not M_NULL.

Note, you can perform the same operation as MbufRestore() by using
MbufImport(), which uses the specified file format to restore the
data instead of trying to determine the format from the data.

The FileName parameter specifies the name of the file from which to
restore the data buffer.

The SystemId parameter specifies the system on which the MIL buffer will
be allocated. This parameter must be given a valid system identifier or can
be set to M_DEFAULT_HOST. In the latter case, the default Host system of

MIL_TEXT_PTR FileName; Source file name

MIL_ID SystemId; System identifier
MIL_ID *BufIdPtr; Storage location for MIL buffer identifier

MbufRestore 317

the current MIL application is used. You can also specify M_DEFAULT, in
which case MIL selects the most appropriate system on which to allocate
the buffer (either the Host system or any currently allocated system).

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufRestore() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note MIL-Lite does not support JPEG 2000 compression, and requires dedicated
hardware for JPEG compression. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufLoad(), MbufSave(), MbufExport(), MbufImport(),
MbufInquire(), MbufControl()

318 MbufSave

MbufSave

Synopsis Save a data buffer in a file, using the MIL output file format.

Format void MbufSave(FileName, BufId)

Description This function saves a previously allocated data buffer in a file, using the
MIL output file format (a regular TIFF file format with extra information
included in the comment field). The buffer attributes and data type are also
saved in the file.

When saving an image buffer (M_IMAGE) that has an associated LUT buffer
(color palette), the content of the LUT is also saved with the image.

Note, you can perform the same operation as MbufSave() by using
MbufExport() with its FileFormatBufId parameter set to M_MIL.

The FileName parameter specifies the name of the file in which to save the
data buffer. If this file already exists, it will be overwritten.

The BufId parameter specifies the identifier of the data buffer to save.

Note This function is optimized for packed binary buffers.

See also MbufLoad(), MbufRestore(), MbufExport(), MbufImport(),
MbufControl()

MIL_TEXT_PTR FileName; Destination file name

MIL_ID BufId; Source buffer

MdigAlloc 319

MdigAlloc

Synopsis Allocate a digitizer.

Format MIL_ID MdigAlloc(SystemId, DigNum, DataFormat, InitFlag,
 DigIdPtr)

Description This function allocates a digitizer on the specified system so that it can be
used by subsequent MIL digitizer functions.

A digitizer on the target system must be allocated in order to acquire data
from an input device.

Upon execution of this command, MIL ensures that the digitizer is present
before allocating it and generates an error if it is not.

The default input channel is determined by the selected DCF (generally,
M_CH0). Some digitizers have multiple input channels. You can switch to
another channel using MdigChannel().

When you have completely finished using a digitizer, you should free it,
using MdigFree().

The SystemId parameter specifies the identifier of the system on which the
digitizer will be allocated. This parameter must be given a valid system
identifier.

The DigNum parameter specifies the number (or rank) of the digitizer that
is required. This parameter can be set to one of the following:

MIL_ID SystemId; System identifier

long DigNum; Digitizer number
MIL_TEXT_PTR DataFormat; DCF that corresponds to data format of

the input device
long InitFlag; Initialization flag

MIL_ID *DigIdPtr; Storage location for digitizer identifier

M_DEFAULT Default digitizer (the same as M_DEV0).
M_DEV0 The first digitizer on the specified system.
... The nth digitizer on the specified system.
M_DEV15 The sixteenth digitizer on the specified system.

320 MdigAlloc

The DataFormat parameter specifies the name of the digitizer
configuration format (DCF) for your input device. Depending on the target
system, different DCFs are supported. See the MIL/MIL-Lite Board
Specific Notes for the valid values. To use the DCF specified in the milsetup.h
file, set this parameter to M_CAMERA_SETUP.

The InitFlag parameter specifies the type of initialization you want to
perform on the digitizer. This parameter should be set to M_DEFAULT.

The DigIdPtr parameter specifies the address of the variable in which the
digitizer identifier is to be written. Since the MdigAlloc() function also
returns the digitizer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the digitizer identifier. If allocation fails, M_NULL is
returned.

See also MdigFree(), MappAllocDefault()

MdigChannel 321

MdigChannel

Synopsis Select the active input channel of a digitizer.

Format void MdigChannel(DigId, Channel)

Description This function selects the active input channel (if any) for the specified
digitizer. If the digitizer does not have the specified channel, an error is
generated and the last selected channel remains effective. The default
channel is the one specified in the data format selected upon digitizer
allocation, using MdigAlloc().

The DigId parameter specifies the identifier of the digitizer.

The Channel parameter specifies the channel on which the digitizer is to
input data (signal and sync). This parameter can be set to one of the
following values, depending on the number of channels available for the
specified digitizer’s data format.

If your digitizer has only one channel that supports the selected data format,
Channel can only be set to M_DEFAULT.

To select a sync channel only, add M_SYNC to the required channel (M_CH...)
parameter (for example, M_CH0+M_SYNC).

To select a signal channel only, add M_SIGNAL to the required channel
(M_CH...) parameter (for example, M_CH0+M_SIGNAL).

See also MdigAlloc()

MIL_ID DigId; Digitizer identifier

long Channel; Input channel

M_DEFAULT Corresponds to the default channel for the specified
digitizer data format or M_CH0.

M_CH0 Channel 0
M_CH1 Channel 1
M_CH2 Channel 2
M_CH3 Channel 3
M_RGB RGB input source (if present). The RGB signal is on

channels 0, 1, and 2. The sync is on channel 3. This
selection can be used only for RGB input.

322 MdigControl

MdigControl

Synopsis Control the specified digitizer feature.

Format void MdigControl(DigId, ControlType, ControlValue)

Description This function allows you to control various digitizer settings.

The DigId parameter specifies the identifier of the digitizer.

The ControlType and ControlValue parameters specify, respectively, the
digitizer feature to control and the value to assign to the digitizer feature.

MIL_ID DigId; Digitizer identifier

long ControlType; Control Type
double ControlValue; Control value

ControlType Description & ControlValue
M_GRAB_DIRECTION_X Set the horizontal grab direction:

M_REVERSE Flip the grabbed image
horizontally.

M_FORWARD Grab normally in the
horizontal direction.

M_DEFAULT Same as M_FORWARD.
M_GRAB_DIRECTION_Y Set the vertical grab direction:

M_REVERSE Flip the grabbed image
vertically.

M_FORWARD Grab normally in the
vertical direction.

M_DEFAULT Same as M_FORWARD.

MdigControl 323

M_GRAB_SCALE Control the vertical and horizontal scaling factor when
grabbing data with MdigGrab() or
MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).
For example, if
ControlValue is set to 0.5,
the source image height
and width are reduced by a
factor of two.

M_FILL_DESTINATION The scaling factor is
calculated to fill the
destination buffer, if the
hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab is scaled to fit the size
of the display, if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

M_GRAB_SCALE_X Control the horizontal scaling factor when grabbing data
with MdigGrab() or MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).

M_FILL_DESTINATION The scaling factor is
calculated to fill the width
of the destination buffer, if
the hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab width is scaled to fit
the size of the display, if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

ControlType Description & ControlValue

324 MdigControl

M_GRAB_SCALE_Y Control the vertical scaling factor when grabbing data with
MdigGrab() or MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).

M_FILL_DESTINATION The scaling factor is
calculated to fill the height
of the destination buffer, if
the hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab height is scaled to fit
the size of the display if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

M_GRAB_TIMEOUT Set the maximum time to wait for a frame before generating
an error.
M_DEFAULT Determined by the frame

period.
M_INFINITE Wait indefinitely. This is

recommended only for
triggered cameras.

value in msec Specify time for wait.
M_GRAB_WINDOW_RANGE Limit the range of pixel values between 10 and 245:

M_ENABLE or M_DISABLE.
M_SOURCE_OFFSET_X Set the X offset of the input signal capture window.
M_SOURCE_OFFSET_Y Set the Y offset of the input signal capture window.
M_SOURCE_SIZE_X Set the width of the input signal capture window.
M_SOURCE_SIZE_Y Set the height of the input signal capture window.

ControlType Description & ControlValue

MdigControl 325

M_GRAB_MODE Control the synchronization when grabbing data with
MdigGrab().
M_SYNCHRONOUS
(default)

Synchronize your
application with the end of
a grab operation (that is,
wait until a grab has
finished before returning
from the grab command).

M_ASYNCHRONOUS Do not synchronize your
application with the end of
a grab operation, but return
immediately after initiating
the start of a grab. This
allows other operations to
be performed while waiting
for MdigGrab() to be
executed. However, only
one MdigGrab() command
can be queued; a call to
another MdigGrab()
before the current grab has
finished will cause your
application to wait until the
current grab has finished.
Note, in this mode, you can
use MdigGrabWait() to
force your application to
wait until a grab that is in
progress has finished.

M_ASYNCHRONOUS_QUEUED Do not synchronize your
application with the end of
a grab operation, but return
immediately after initiating
the start of the grab. Queue
the grab on-board if
another grab is issued
before the first one has
finished. This allows other
operations to be performed
while waiting for the next
MdigGrab() to be
executed, but in this case
more than one MdigGrab()
command can be queued.
See MIL/MIL-Lite Board
Specific Notes for
exceptions.

ControlType Description & ControlValue

326 MdigControl

M_GRAB_FIELD_NUM Control the number of fields to grab when grabbing data
with MdigGrab(). This control type can only be set to 1 or
2, and should only be used for interlaced video. When set to
1, each field is treated like a frame and the following
digitizer hooks are aligned with the field:
M_GRAB_FRAME_START, M_GRAB_END, and
M_GRAB_FRAME_END. To achieve 60 fps in NTSC or 50 fps
in PAL, control type M_GRAB_START_MODE must be set to
M_FIELD_START.

M_GRAB_START_MODE Set the grab start mode to odd, even or any field:
M_FIELD_START_ODD, M_FIELD_START_EVEN
(M_DEFAULT), or M_FIELD_START.

M_GRAB_HALT_ON_NEXT_FIELD Stop grabbing at the end of the current field, rather than at
the end of the frame. M_ENABLE, M_DISABLE or
M_DEFAULT (same as M_DISABLE).

M_GRAB_TRIGGER_SOURCE Set the source of the grab trigger.
M_NULL The trigger is inactive.
M_DEFAULT Same as DCF file (if any) or

M_NULL.
M_SOFTWARE Use software trigger.
M_HARDWARE_PORT0 Use hardware trigger

connected to port 0 (the
most common connection
for analog). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT1 Use hardware trigger
connected to port 1 (the
most common connection
for digital). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT_CAMERA Use hardware trigger
connected to the same port
as the selected camera
(MIL-determined). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_TIMER1 Trigger on Timer1 signal.
M_TIMER2 Trigger on Timer2 signal.

ControlType Description & ControlValue

MdigControl 327

M_GRAB_TRIGGER_MODE Set the hardware trigger activation mode.
M_EDGE_RISING Low to high signal

variation (valid with
exposure).

M_EDGE_FALLING High to low signal variation
(valid with exposure).

M_LEVEL_LOW Minimum signal level (not
valid with exposure).

M_LEVEL_HIGH Maximum signal level (not
valid with exposure).

M_DEFAULT The trigger mode in the
DCF file or, if none,
M_EDGE_RISING.

M_GRAB_TRIGGER Set the grab trigger detection state.
M_ENABLE Enable trigger detection.
M_DISABLE Disable trigger detection.
M_DEFAULT The trigger state from the

DCF file or, if none,
M_DISABLE.

M_ACTIVATE Start the grab immediately
(for software trigger). An
asynchronous or continuous
grab must be in progress.

M_GRAB_EXPOSURE_BYPASS
(If the board supports exposures; See
Matrox Board Specific Notes)

Activate the manual or automatic exposure model (see
Grabbing with triggers in the Matrox Imaging Library User
Guide):
M_ENABLE Manual exposure model.
M_DISABLE Automatic exposure model.
M_DEFAULT Same as M_DISABLE.

For the following M_GRAB_EXPOSURE... control types, you can add M_TIMER1 or M_TIMER2 in manual
exposure mode, to control the different on-board exposure timers. When omitted, Timer1 is assumed.

M_GRAB_EXPOSURE
(If the board supports exposures; See
Matrox Board Specific Notes)

When using a software trigger source, use this control type
to activate the specified grab exposure timer. When using a
non-software trigger source, enable or disable the specified
grab exposure timer. Note, the M_GRAB_EXPOSURE control
type has no effect when grabbing using the automatic
exposure model.
M_ACTIVATE Activate a software trigger

for the specified exposure
timer.

M_ENABLE Enable exposure timer.
M_DISABLE Disable exposure timer.
M_DEFAULT same as .dcf (non-software

trigger source).

ControlType Description & ControlValue

328 MdigControl

M_GRAB_EXPOSURE_TIME
(If the board supports exposures; See
Matrox Board Specific Notes)

Set the time (in nsec) for the active portion of the exposure
signal (that is, the exposure time). M_DEFAULT has the
same effect as the setting in the digitizer’s DCF.
When using the automatic exposure model, if a single timer
cannot generate the required exposure time, MIL
automatically sets up connections with the second timer to
generate the requested exposure time length. If
ControlValue is set to 0, exposure is disabled and the grab
is performed immediately.
Note, an error is returned if the specified exposure time
cannot be generated.

M_GRAB_EXPOSURE_MODE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Set the exposure signal’s polarity:
M_LEVEL_HIGH
M_LEVEL_LOW
M_DEFAULT Same as DCF.

M_GRAB_EXPOSURE_TIME_DELAY
(If the board supports exposures; See
MIL/MIL-Lite Specific Notes)

Set the delay (in nsec) between the trigger and the start of
exposure. If M_DEFAULT, same value as DCF.
Note, an error is returned if the specified delay cannot be
generated.

M_GRAB_EXPOSURE_TRIGGER_MODE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Set the trigger activation mode for specified timer.

M_DEFAULT Same as the .dcf file.
M_EDGE_RISING Low-to-high signal

variation.
M_EDGE_FALLING High-to-low signal

variation.

ControlType Description & ControlValue

MdigControl 329

M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Select the trigger source for the specified exposure timer if
the hardware supports it.
The M_GRAB_EXPOSURE_SOURCE control type has no effect
when grabbing using the automatic exposure model.
M_DEFAULT Same as the .dcf file.
M_NULL Disable specified exposure

timer. This has no effect
when grabbing using
automatic exposure model.

M_SOFTWARE Use software trigger. The
exposure signal is
generated when
MdigControl() with
M_GRAB_EXPOSURE +
M_TIMERn and
M_ACTIVATE is called.

M_HARDWARE_PORT0 Connect hardware trigger
to port 0. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT1 Connect hardware trigger
to port 1. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT2 Connect hardware trigger
to port 2. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_VSYNC Use vertical sync signal.
M_HSYNC Use horizontal sync signal.
M_TIMER1 Use exposure signal

generated by Timer1. Use
only if setting trigger
source for Timer2.

M_TIMER2 Use exposure signal
generated by Timer2. Use
only if setting trigger
source for Timer1.

M_CONTINUOUS No actual trigger. Run
selected exposure timer in
periodic mode.
Automatically reset timer
after each exposure signal
is output. Exposure signal
loops between delay and
active mode.

ControlType Description & ControlValue

330 MdigControl

Note If using a software trigger, setting M_GRAB_TRIGGER to M_ACTIVATE starts
a grab immediately; if using a hardware trigger, setting M_GRAB_TRIGGER
to M_DISABLE temporarily stops a continuous grab.

See also MdigGrab(), MdigGrabContinuous(), MdigGrabWait()

MdigFree 331

MdigFree

Synopsis Free a digitizer.

Format void MdigFree(DigId)

Description This function deallocates a digitizer previously allocated with MdigAlloc().

The DigId parameter specifies the identifier of the digitizer.

See also MdigAlloc()

MIL_ID DigId; Digitizer identifier

332 MdigGrab

MdigGrab

Synopsis Grab data from an input device into a buffer.

Format void MdigGrab(DigId, DestImageBufId)

Description This function uses the specified digitizer to acquire data from an input
device (generally a camera) and stores this data in the destination image
buffer.

When grabbing in color, all bands will be filled simultaneously. Note, the
destination image buffer must have the same number of color bands (in
general three) as the digitizer.

When acquiring data from a line-scan type of input device, each line of the
destination image buffer is filled from top to bottom or a single line is
grabbed, depending on the data format specification passed to MdigAlloc().
The operation will only end when the entire buffer has been filled.

When acquiring data from an interlaced camera, both the odd and even
fields are grabbed.

You can use MdigGrabContinuous() to grab multiple frames of data.

The DigId parameter specifies the identifier of the digitizer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

Example Mgrab.c

See also MdigGrabContinuous(), MdigControl()

MIL_ID DigId; Digitizer identifier

MIL_ID DestImageBufId; Destination image buffer identifier

MdigGrabContinuous 333

MdigGrabContinuous

Synopsis Grab data continuously from an input device.

Format void MdigGrabContinuous(DigId, DestImageBufId)

Description This function uses the specified digitizer to continuously acquire frames of
data from the specified input device (generally a camera) and stores this
data in the destination image buffer, until MdigHalt() is called.

When acquiring data from a line-scan type of input device, each line of the
destination image buffer is filled from top to bottom or a single line is
grabbed, depending on the data format specification passed to MdigAlloc().
The operation will only end when the entire buffer has been filled.

When grabbing in color, the destination image buffer must have the same
number of color bands (in general three) as the digitizer; all bands will be
filled simultaneously.

The DigId parameter specifies the identifier of the digitizer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

Examples mdispovr.c,mwindisp.c, mfocus.c, mdbproc.c, mgrabhk.c, mgrabseq.c,
msubtrac.c

See also MdigHalt(), MdigGrab(), MdigControl()

MIL_ID DigId; Digitizer identifier

MIL_ID DestImageBufId; Destination image buffer identifier

334 MdigGrabWait

MdigGrabWait

Synopsis Wait for the end of the grab in progress.

Format void MdigGrabWait(DigId, Flag)

Description This function allows you to temporarily override a grab mode of
M_ASYNCHRONOUS on the specified digitizer (see MdigControl()). Using
this function allows your application to wait for the grab in progress to end,
before continuing.

The DigId parameter specifies the identifier of the digitizer.

The Flag parameter specifies the digitizer flag to set. This parameter must
be set to one of the following:

The M_GRAB_END flag should not be used when grabbing data with
MdigGrabContinuous().

Some of these flags are not supported on all platforms.

See also MdigControl(), MdigGrab()

MIL_ID DigId; Digitizer identifier

long Flag; Digitizer flag

M_GRAB_END Wait for the end of the current grab.
M_GRAB_NEXT_FRAME Wait for the end of the current frame grab.
M_GRAB_NEXT_FIELD Wait for the end of the current field grab.

MdigHalt 335

MdigHalt

Synopsis Halt a continuous grab from an input device.

Format void MdigHalt(DigId)

Description This function stops the specified digitizer from grabbing data. It should be
used when performing a continuous grab with MdigGrabContinuous().

This function will wait for the end of the current frame before returning, to
ensure the last frame is always valid. To override this, use MdigControl()
with M_GRAB_HALT_ON_NEXT_FIELD set to M_ENABLE.

The DigId parameter specifies the identifier of the digitizer.

Examples mdispovr.c, mwindisp.c
 See also MdigGrabContinuous(), MdigControl()

MIL_ID DigId; Digitizer identifier

336 MdigHookFunction

MdigHookFunction

Synopsis Hook a function to a digitizer event.

Format void MdigHookFunction(DigId, HookType,
 HookHandlerPtr, UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified digitizer event. Once a hook-handler function is defined and
hooked to an event, it is automatically called when the event occurs.

Note that functions hooked to an event execute on a distinct thread. This
permits the functions to run asynchronously from the operation that fired
the event and from functions hooked to other events. Although there is a
small queue to permit a certain amount of overlap, hooked functions should
not take longer to execute than the period in which two of their associated
events can occur. You cannot determine the instance of the event that fired
the function, and even if this were possible, this information would generally
not be very useful because, for example, you could miss a grab. Typically, a
hooked function performs the minimum number of operations required and,
if necessary, performs longer processes by launching other threads.

You can hook more than one function to an event by making separate calls
to MdigHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.

The DigId parameter specifies the identifier of the digitizer.

MIL_ID DigId; Digitizer identifier

long HookType; Type of event to hook
MDIGHOOKFCTPTR HookHandlerPtr; Pointer to hook function

void *UserDataPtr User data pointer

MdigHookFunction 337

The HookType parameter specifies the event type. This parameter can be
set to one of the values in the following tables. Note that a hooked function
must be unhooked by combining the HookType parameter with
M_UNHOOK.

When grabbing continuously, the M_GRAB_START event is fired only when
the first frame is grabbed. To be notified at the start of each frame, use the
M_GRAB_FRAME_START event.

When grabbing continuously, the M_GRAB_END event is fired only when the
last frame is grabbed. To be notified at the end of each frame, use the
M_GRAB_FRAME_END event.

When a camera is connected, whether a grab is occurring or not, the
HookType parameter can be set to one of the following:

Starting or stopping a grab does not affect the occurrence of the above four
events.

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

Hook Type Description
M_GRAB_START Hook to the start of each grab.
M_GRAB_END Hook to the end of each grab.
M_GRAB_FRAME_START Hook to the start of grabbed frames.
M_GRAB_FRAME_END Hook to the end of grabbed frames.
M_GRAB_FIELD_END Hook to the end of grabbed fields.
M_GRAB_FIELD_END_ODD Hook to the end of grabbed odd fields.
M_GRAB_FIELD_END_EVEN Hook to the end of grabbed even fields.

M_FRAME_START Hook to the start of the incoming signal’s
frames.

M_FIELD_START Hook to the start of the incoming signal’s
fields.

M_FIELD_START_ODD Hook to the start of the incoming signal’s
odd fields.

M_FIELD_START_EVEN Hook to the start of the incoming signal’s
even fields.

Note: These parameters are not supported on all systems. See
MIL/MIL-Lite Board-Specific Notes to verify if these parameters are
supported on your board.

338 MdigHookFunction

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MDIGHOOKFCTPTR and MPTYPE are reserved MIL
predefined types for function and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype of this function has been kept for backwards
compatibility. However, because of the current chaining method, the
function always returns null.

Examples mgrabhk.c

See also MdigControl()

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Event identifier (currently set to null)

void MPTYPE *UserDataPtr; User data pointer

MdigInquire 339

MdigInquire

Synopsis Inquire about a digitizer parameter setting.

Format long MdigInquire(DigId, InquireType, UserVarPtr)

Description This function inquires about the specified digitizer parameter setting.

The DigId parameter specifies the identifier of the digitizer.

The InquireType parameter specifies the digitizer parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID DigId; Digitizer identifier

long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_OWNER_SYSTEM The MIL identifier (MIL_ID)

of the system on which the digitizer has
been allocated (MdigAlloc()).

M_NATIVE_ID The native identifier of the digitizer (if any).
M_NUMBER Digitizer rank in the system (MdigAlloc()).
M_FORMAT Digitizer data format (MdigAlloc()).
M_FORMAT_SIZE Number of characters in the digitizer data

format string.
M_INIT_FLAG Digitizer initialization flag (MdigAlloc()).
M_CHANNEL Current channel of the digitizer

(MdigChannel()).
M_CHANNEL+M_SYNC Current synchronization channel of the

digitizer (MdigChannel()).
M_CHANNEL+M_SIGNAL Current signal channel of the digitizer

(MdigChannel()).
M_CHANNEL_NUM Number of available channels of the device

(MdigChannel()).
M_LUT_ID MIL identifier (MIL_ID) of the LUT

associated with the digitizer (MdigLut()).
M_BLACK_REF Digitizer black reference level

(MdigReference()).
M_WHITE_REF Digitizer white reference level

(MdigReference()).
M_HUE_REF Digitizer hue reference level

(MdigReference()).
M_SATURATION_REF Digitizer saturation reference level

(MdigReference()).

340 MdigInquire

M_BRIGHTNESS_REF Digitizer brightness reference level
(MdigReference()).

M_COLOR_MODE
See the Matrox Board Specific Notes to determine
which mode applies to your particular board.

Monochrome or color input:
M_MONOCHROME
M_RGB,
M_MONO8_VIA_RGB
M_COMPOSITE,
M_EXTERNAL_CHROMINANCE

M_CONTRAST_REF Digitizer contrast reference level
(MdigReference()).

M_GRAB_SCALE_X Digitizer horizontal and vertical scaling
factor (MdigControl()).

M_GRAB_SCALE_X Digitizer horizontal scaling factor
(MdigControl()).

M_GRAB_SCALE_Y Digitizer vertical scaling factor
(MdigControl()).

M_GRAB_MODE Grab synchronization (M_SYNCHRONOUS,
M_ASYNCHRONOUS, or
M_ASYNCHRONOUS_QUEUED.)
(MdigControl()).

M_GRAB_FIELD_NUM Number of fields grabbed when
MdigGrab() is called. (MdigControl()).

M_GRAB_START_MODE Type of field on which to grab.
M_GRAB_HALT_ON_NEXT_FIELD Whether to stop grabbing as soon as

possible, whether the last frame is valid or
not (MdigControl()).

M_GRAB_TRIGGER_SOURCE Grab trigger source (MdigControl()).
M_GRAB_TRIGGER_MODE Hardware trigger activation mode

(MdigControl()).
M_GRAB_TRIGGER Grab trigger state (M_ENABLE, M_DISABLE,

M_START_GRAB or M_DEFAULT (same as
.dcf, if any, or M_DISABLE)
(MdigControl()).

M_GRAB_WINDOW_RANGE State of limiting the range of the grabbed
pixel values: M_ENABLE or M_DISABLE.

M_SIZE_X Digitizer input width.
M_SIZE_Y Digitizer input height.
M_SIZE_BAND Number of input color bands of the digitizer.
M_SIZE_BAND_LUT Number of input color bands of the input

LUT (if any) associated with the digitizer.
M_SIZE_BIT Number of bits of the digitizer.
M_SIGN Digitizer data range (M_SIGNED or

M_UNSIGNED).
M_TYPE Digitizer data type (number of bits +

M_SIGNED or M_UNSIGNED).

InquireType Description

MdigInquire 341

You can inquire about the reference level on a specific input channel by
adding one of the following predefined values to M_BLACK_REF and
M_WHITE_REF.

For example M_BLACK_REF+M_CH1_REF.

M_SOURCE_SIZE_X Width of the input-signal capture window.
M_SOURCE_SIZE_Y Height of the input-signal capture window.
M_SOURCE_OFFSET_X X offset of the input-signal capture window.
M_SOURCE_OFFSET_Y Y offset of the input signal capture window.
M_SCAN_MODE Scan mode (M_INTERLACE,

M_PROGRESSIVE, or M_LINESCAN).
M_INPUT_MODE Analog or digital input (M_ANALOG or

M_DIGITAL).
M_GRAB_EXPOSURE_BYPASS
(If the board supports exposures; See Matrox Board
Specific Notes)

The exposure model that is activated
(manual or automatic).

For the following M_GRAB_EXPOSURE... inquire types, you can add M_TIMER1 or M_TIMER2 in manual
exposure mode, to control the different on-board exposure timers. When omitted, Timer1 is assumed.

M_GRAB_EXPOSURE
(If the board supports exposures; See Matrox Board
Specific Notes)

Exposure timer state for non-software
trigger source:
M_ENABLE or M_DISABLE.

M_GRAB_EXPOSURE_MODE
(If the board supports exposures; See Matrox Board
Specific Notes)

Exposure signal’s polarity:
M_LEVEL_HIGH or M_LEVEL_LOW.

M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See Matrox Board
Specific Notes)

The trigger source for the specified exposure
timer if the hardware supports it.

M_GRAB_EXPOSURE_TIME
(If the board supports exposures; See Matrox Board
Specific Notes)

Time (in nsec) for the active portion of the
exposure signal (that is, the exposure time).
M_DEFAULT has the same effect as the
setting in the digitizer’s DCF.

M_GRAB_EXPOSURE_TIME_DELAY
(If the board supports exposures; See Matrox Board
Specific Notes)

The delay (in nsec) between the trigger and
the start of exposure.

M_GRAB_EXPOSURE_TRIGGER_MODE
(If the board supports exposures; See Matrox Board
Specific Notes)

Trigger activation mode for specified timer:
M_EDGE_RISING or M_EDGE_FALLING.

InquireType Description

M_CH0_REF Inquire about reference level on channel 0 (default).
M_CH1_REF Inquire about reference level on channel 1.
M_CH2_REF Inquire about reference level on channel 2.
M_CH3_REF Inquire about reference level on channel 3.

342 MdigInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MdigInquire()
function also returns the requested information, you can set this parameter
to M_NULL.

The UserVarPtr parameter should be a pointer to a long, except when
InquireType is set to one of the following:

■ M_OWNER_SYSTEM and M_LUT_ID, in which case it should be a pointer
to a MIL_ID.

■ M_FORMAT, in which case it should be a pointer to an array of
MIL_TEXT_CHAR.

■ M_GRAB_SCALE_X and M_GRAB_SCALE_Y, in which case it should be a
pointer to a double.

Return value Except for the M_FORMAT inquire type, the returned value is the setting of
the requested digitizer attribute, cast to long. For the M_FORMAT inquire
type, the returned value is M_NULL.

See also MdigAlloc(), MdigChannel(), MdigControl(), MdigReference()

MdigLut 343

MdigLut

Synopsis Copy a LUT buffer to a digitizer LUT.

Format void MdigLut(DigId, LutBufId)

Description This function copies a LUT buffer to the specified digitizer LUT. MIL uses
the data format of the digitizer to determine whether a LUT is supported.
If it is not, an error is generated.

The DigId parameter specifies the identifier of the digitizer.

The LutBufId parameter specifies the identifier of a previously allocated
LUT buffer (with an M_LUT attribute).

The number of entries in the LUT buffer must match those of the digitizer,
but the pixel depth of the LUT buffer and the digitizer can be different. A
1-band LUT can be copied to a 1-band digitizer LUT, or a 3-band digitizer
LUT. If the LUT buffer has a single color band, its data is copied to the LUTs
of each of the digitizer’s color bands; this will pseudo-color the grabbed
image. A three-band LUT can also be copied to a 1-band digitizer LUT or a
3-band digitizer LUT. If the LUT buffer has three color bands, each band
copied to the single band digitizer LUT. You can set this parameter to
M_DEFAULT to associate the default pass-through LUT (or transparent
LUT) with the digitizer.

See also MdigAlloc(), MbufAlloc1d()

MIL_ID DigId; Digitizer identifier

MIL_ID LutBufId; LUT buffer identifier

344 MdigReference

MdigReference

Synopsis Select digitization reference level.

Format void MdigReference(DigId, ReferenceType, ReferenceLevel)

Description This function sets (if available) the reference levels used to digitize the
analog signal received from an input device (generally a camera). This
function is specific to analog input devices. Depending on the type of
digitizer and input signal, some reference types are not applicable.

The DigId parameter specifies the identifier of the digitizer on which to set
the reference level. An error is generated if the specified digitizer does not
support the type of programmable digitization reference levels specified.

The ReferenceType parameter specifies the reference level type to adjust
for the specified digitizer. This parameter can be set to one of the following:

On many digitizers, when using RGB or multi-tap input and setting
ReferenceType to M_BLACK_REF or M_WHITE_REF, you can control the
reference level of a specific input channel by combining it with one of the
following:

MIL_ID DigId; Digitizer identifier

long ReferenceType; Reference type
long ReferenceLevel; Reference level

M_BLACK_REF Set the input signal’s digitization black reference level (0).
M_WHITE_REF Set the input signal’s digitization white reference level (eg:

0xff for 8-bit digitization).
M_BRIGHTNESS_REF Set the brightness level for composite input signals.
M_CONTRAST_REF Set the contrast level for composite input signals.
M_HUE_REF Set the hue level for composite input signals.
M_SATURATION_REF Set the saturation level for composite input signals.

M_CH0_REF Set the reference level on input channel 0.
M_CH1_REF Set the reference level on input channel 1.
M_CH2_REF Set the reference level on input channel 2.
M_CH3_REF Set the reference level on input channel 3.
M_ALL_REF Set the reference level on all input channels.

 (This is the default setting).

MdigReference 345

The ReferenceLevel parameter specifies the level of reference. This
parameter can be set to a value between M_MIN_LEVEL and M_MAX_LEVEL,
inclusive. The value may be expressed as an integer within this range, or
as M_MIN_LEVEL + n or M_MAX_LEVEL - n. If you set this parameter to
M_DEFAULT, the reference levels are set to the default levels for the specified
digitizer data format.

To calculate the value to pass to MdigReference(), use the following equation
with the appropriate voltages specified in the MIL Board-specific notes for
your particular board.The smallest voltage increment supported by your

board can differ such that consecutive reference-level settings might
produce the same result.

Note, some digitizers might take a few milliseconds before the reference
level stabilizes.

See also MdigAlloc()

Voltage needed - minimum voltage

maximum voltage - minimum voltage

M_MAX_LEVEL - M_MIN_LEVEL

=
Value to pass to
MdigReference()

346 MdispAlloc

MdispAlloc

Synopsis Allocate a display.

Format MIL_ID MdispAlloc(SystemId, DispNum, DispFormat, InitFlag,
 DisplayIdPtr)

Description This function allocates a display on the specified system so that it can be
used by subsequent MIL display functions.

A display must be allocated to display an image buffer. Note that the buffer
and the display should be allocated on the same system.

When you have completely finished using a display, you should free it, using
MdispFree().

The SystemId parameter specifies the system on which the display is
allocated. This parameter must be given a valid system identifier.

The DispNum parameter specifies the number (or rank) of the display. This
parameter should always be set to M_DEFAULT since MIL will find the best
device to use when displaying an image in a windowed display or in an
auxiliary display. If your imaging board has a display section, and it is
available, MIL will typically use it for display purposes.

The DispFormat parameter specifies the display format or the name of the
file (*.vcf) in which the display format is to be found. For windowed displays,
DispFormat must be set to “M_DEFAULT”. For auxiliary displays,
DispFormat can be set to a string that specifies the required video output
format; note that when you are allocating an auxiliary display, MIL does
not impose any restrictions on this format. See the MIL/MIL-Lite
Board-Specific Notes manual for the formats supported by your board. Note
that for auxiliary displays, DispFormat can also be set to “M_DEFAULT”,
which indicates that MIL should use the default display format specified in
the MIL/MIL-Lite Board-Specific Notes manual.

MIL_ID SystemId; System identifier

long DispNum; Display number
MIL_TEXT_PTR DispFormat; Display format name or file name

long InitFlag; Initialization flag
MIL_ID *DisplayIdPtr; Storage location for the display

identifier

MdispAlloc 347

The InitFlag parameter specifies your display’s type. This parameter can
be set to one of the following:

For windowed displays, when using a 256-color Windows display resolution,
you can control the Windows display function that MIL uses for display by
adding one of the following to InitFlag. To independently control the display
of 8-bit and 3-band 8-bit images, add both an M_DISPLAY_8... and
M_DISPLAY_24... display initialization to InitFlag.

M_WINDOWED The image buffer selected for display purposes is presented in its own
window on the Windows desktop screen(s). The display window is
tracked and updated with the image buffer selected for display; that is,
if the window moves or is occluded, the window is updated with the
image buffer accordingly. For each system that has been allocated, you
can allocate and select up to a maximum of 64 windowed displays.

M_AUXILIARY The image buffer selected for display has no window associated with it
and is presented at the top-left corner on the auxiliary screen, which is
any output device that is not part of the Windows desktop. You are
responsible for moving and tracking this type of display, if required.
Note that if you are using the second CRT controller provided with the
Matrox Millennium G400, G450, or G550 for your auxiliary screen,
your display driver’s DualHead mode must be disabled, otherwise both
the display driver and the MIL driver will attempt to access the second
CRT controller. In addition, the second CRT controller provided with
the G400 does not support encoded video formats, but the G450 and
G550 do.

M_DEFAULT Typically, the default display type is M_WINDOWED. However, a
Matrox imaging board might be dedicated for MIL auxiliary display,
which can make the default M_AUXILIARY. For more information, see
the board’s installation and hardware reference manual.

Display initialization Description
M_DISPLAY_ENHANCED
M_DISPLAY_8_ENHANCED
M_DISPLAY_24_ENHANCED
(default)

When using an enhanced initialization, the MIL display
calls the Microsoft Video for Windows
DrawDIBDraw() function to display image buffers.
This function's use of dithering particularly improves
the display of 3-band 8-bit images under a 256-color
display resolution.
Note, with enhanced initializations, the actual display
color values are selected, on a best-match basis, from
the logical palette's available display colors. Therefore,
effects such as those of an inverse LUT are not possible.
This is the default display initialization for an 8-bit
3-band image buffer.

348 MdispAlloc

You can add one of these values to the InitFlag to control the Windows
zoom type that MIL uses for the display:

M_DISPLAY_BASIC
M_DISPLAY_8_ BASIC (default)
M_DISPLAY_24_BASIC

When using a basic with optimization initialization, the
MIL display calls the Windows API StretchDIBits(),
StretchBlt(), or DirectDrawBlt() function to display
image buffers. When 8-bit images are displayed, the
pixel values are used, as much as possible, to index the
physical LUTs. When 3-band 8-bit images are displayed
in a 256-color display resolution, the display uses an
algorithm optimized for speed. This algorithm converts
24 bits to 8 bits by taking the most-significant bits of
each component: 3 bits each are taken from the red and
green components, and 2 bits from the blue. This
produces an 8-bit DIB with 3:3:2 RGB values for
display; it is these values that are used to address the
physical LUTs. This is the best possible combination
when you are not aware of the color content of the
image buffer.

M_DISPLAY_WINDOWS
M_DISPLAY_24_WINDOWS

When using a basic without optimization initialization,
the MIL display calls the Windows API
StretchDIBits(), StretchBlt() or DirectDrawBlt()
function to display image buffers; however no
optimization for speed is done when displaying a 3-band
8-bit image in a 256-color display resolution. This can
result in slow performance.
This display initialization is a combination of
M_DISPLAY_8_BASIC and M_DISPLAY_24_WINDOWS.

Display initialization Description

Zoom initialization Description
M_ZOOM_ENHANCED When using an enhanced initialization, the DrawDIBDraw()

function is called to perform a zoom. Although zooming might be
a little slower than using the basic initialization option, it does
not alter the dithering quality, providing a better quality zoom.
This option is the default and is only available when
M_DISPLAY_XXX_ENHANCED is used.
When adding a zoom initialization type, the default is
M_ZOOM_ENHANCED. If you select only
M_DISPLAY_ENHANCED, M_ZOOM_ENHANCED is assumed.

M_ZOOM_BASIC When using a basic initialization, Windows (Windows API
functions) is called to perform a zoom. Note, if
M_DISPLAY_XXX_ENHANCED is used, this zoom might alter the
quality of the DrawDIBDraw() dithering.

MdispAlloc 349

The DisplayIdPtr parameter specifies the address of the variable in which
to write the display identifier. Since the MdispAlloc() function also returns
the display identifier, you can set this parameter to M_NULL. If allocation
fails, M_NULL is written as the identifier.

Return value The returned value is the display identifier. If allocation fails, M_NULL is
returned.

See also MdispControl(), MdispFree(), MappAllocDefault()

350 MdispControl

MdispControl

Synopsis Control the MIL display.

Format void MdispControl(DisplayId, ControlType, ControlValue)

Description This function allows you to control the specified MIL display; it does this by
setting the state of the display’s individual features.

The DisplayId parameter specifies the identifier of the target display.

The ControlType and ControlValue parameters specify the display
feature to modify and the new value to assign to the feature, respectively.
The control types for windowed displays can control the default MIL or
user-specified window of a display (MdispSelect() or
MdispSelectWindow()).

The corresponding combinations for the ControlType and ControlValue
parameters are:

MIL_ID DisplayId; Display identifier

long ControlType; Window feature to change
long ControlValue; Value of the window feature

ControlType Description and ControlValue
Unless otherwise stated, the following controls are only available with windowed displays.
M_DESKTOP_CHANGE Allow the update of the Windows desktop:

M_ENABLE or M_DISABLE.
Note: M_DISABLE (stop desktop update) should be used
carefully and only for short periods of time otherwise
undesirable results can occur.

M_THREAD_PRIORITY Thread priority.

Range: Priority class:

1 - 6 Idle.

7 - 10 Normal.

11 - 15 High.

16, 22-26, 31 Real-time.
M_VIEW_BIT_SHIFT The number of bits by which to shift when M_VIEW_MODE is

set to M_BIT_SHIFT. Should be set to the number of
significant bits in the buffer minus 8. For example, if a 16-bit
buffer contains data grabbed from a 10-bit digitizer, a shift of
2 should be used.

MdispControl 351

M_VIEW_MODE Controls how a buffer gets remapped to the display;
especially useful when displaying a non 8-bit buffer.
M_BIT_SHIFT Bit-shift the pixel values of the buffer

by the specified number of bits upon
updating the display. Specify the
number of bits with
M_VIEW_BIT_SHIFT.

M_MULTI_BYTES Display each byte of the buffer in
separate display pixels. In other words,
each pixel of a 16-bit buffer will occupy
two consecutive display pixels. Each
pixel of a 32-bit buffer will occupy four
consecutive display pixels. This mode
is primarily useful when grabbing from
a multi-tap camera.

M_DEFAULT MIL automatically selects the
appropriate mode, depending on the
buffer depth:
1-bit M_BIT_SHIFT (0 shift),
8-bit M_BIT_SHIFT (0 shift),
16-bit M_BIT_SHIFT (8-bit shift),
32-bit M_BIT_SHIFT (24-bit shift),
32-bit float M_BIT_SHIFT (0 shift)

M_WINDOW_BUF_WRITE Allow direct access (destructive annotation) to the copy of
the buffer stored in the frame buffer, after an MdispSelect()
operation: M_ENABLE or M_DISABLE (default).
If enabled, the MIL identifier of this buffer can be inquired,
using MdispInquire().
If disabled, the buffer is invalid.

M_WINDOW_COLOR Force a window update to fill with a constant background
color rather than with the selected buffer: M_ENABLE or
M_DISABLE.

M_WINDOW_COLOR_CHANGE Set a background color, in Windows’ COLORREF format. It
is used when M_WINDOW_COLOR is enabled.

M_WINDOW_INITIAL_POSITION_X Set the window client area’s initial left-most X-coordinate.
M_WINDOW_INITIAL_POSITION_Y Set the window client area’s initial topmost Y-coordinate.

ControlType Description and ControlValue

352 MdispControl

M_WINDOW_KEYBOARD_USE Activate the keys associated with the display window:
M_ENABLE (default) or M_DISABLE.
The default key usage is:
+ Increase the X and Y zoom factors.
- Decrease the X and Y zoom factors.
Pg-up Scroll the buffer up to the previous

display section.
Pg-dn Scroll the buffer down to the next

display section.
Up arrow Scroll the buffer up to the previous

line.
Dn arrow Scroll the buffer down to the next line.
Left arrow Pan the buffer left by one pixel.
Right arrow Pan the buffer right by one pixel.
Ctrl Up arrow Scroll the buffer up to the previous

display section.
M_WINDOW_MAXBUTTON Make the window’s maximize button visible: M_ENABLE or

M_DISABLE.
M_WINDOW_MENU_BAR Make the window’s menu bar visible:

M_ENABLE or M_DISABLE.
M_WINDOW_MENU_BAR_CHANGE Allow toggling the menu bar presence:

M_ENABLE or M_DISABLE.
M_WINDOW_MINBUTTON Make the window’s minimize button visible: M_ENABLE or

M_DISABLE.
M_WINDOW_MOVE Allow window movement: M_ENABLE or M_DISABLE

M_WINDOW_OVERLAP Allow window to be overlapped by another:
M_ENABLE or M_DISABLE (keep window on top).

M_WINDOW_OVR_DESTRUCTIVE The overlay shown on top of the buffer is allowed to
overwrite the buffer’s content (to increase display speed or
save memory): M_ENABLE or M_DISABLE (default).

M_WINDOW_OVR_FLICKER The overlay shown on top of the buffer is allowed some
flicker (to increase display speed or save memory):
M_ENABLE or M_DISABLE (default).

ControlType Description and ControlValue

MdispControl 353

M_WINDOW_PALETTE_NOCOLLAPSE M_ENABLE The Windows palette manager
attempts the best color usage of the
logical palette when realizing the
output LUTs. It tries to map colors
from the logical palette into the
currently-realized output LUTs to
reduce the number of requested new
entries.

M_DISABLE
(default)

The Windows palette manager loads
each component of the logical palette
directly “as is” in the corresponding
output LUT. This can result in a color
occurring more than once in the output
LUTs.

M_WINDOW_RANGE Inform the display that the displayed buffer values will be
restricted to between 10 and 245. This allows the
optimization of display updates. M_ENABLE or M_DISABLE
(default).

M_WINDOW_RESIZE Allow window resizing: M_ENABLE (or M_NORMAL_SIZE),
M_DISABLE, or M_FULL_SIZE (to force a full-size display).

M_WINDOW_SCROLLBAR Make the window's scroll bars visible:
M_ENABLE or M_DISABLE.

M_WINDOW_SNAP_X Restrict the left-most X-coordinate of window client area to a
given multiple of the screen's absolute coordinate.
Permissible values are positive or negative integers. Positive
snap values adjust the X-coordinate to the closest right pixel;
negative ones adjust it to the closest left pixel.

M_WINDOW_SNAP_Y Restrict the topmost Y-coordinate of the window client area
to a given multiple of the screen's absolute coordinate.
Permissible values are positive or negative integers. Positive
snap values adjust the Y-coordinate to the closest upper
pixel; negative ones adjust it to the closest lower pixel.

M_WINDOW_SYSBUTTON Make the window's system button visible:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_BAR Make the window's title bar visible:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_BAR_CHANGE Allow toggling the title bar presence:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_NAME Set the display window title to a specified string (the string
must be cast to long).

M_UPDATE Allow display updates by MIL when a buffer is modified:
M_ENABLE or M_DISABLE. This control type can be used to
temporarily disable the display updates in a display when its
buffer is being modified by more than one operation; the
display can then be updated at end of all operations only.

ControlType Description and ControlValue

354 MdispControl

Example mdispovr.c

See also MdispInquire()

M_WINDOW_UPDATE_ON_PAINT M_ENABLE Update the display on reception of a
WM_PAINT message in Windows.

M_DISABLE Update the display on reception of a
WM_ERASEBKGND message in
Windows.

 M_DEFAULT Allow MIL to decide which message to
receive before updating the display.

M_WINDOW_ZOOM Allow window zooming: M_ENABLE or M_DISABLE

M_ZOOM_MAX_X Set the upper limit in X of the window zooming (1<x<16).
M_ZOOM_MAX_Y Set the upper limit in Y of the window zooming (1<x<16).
M_ZOOM_MIN_X Set the lower limit in X of the window zooming (1<x<16).
M_ZOOM_MIN_Y Set the lower limit in Y of the window zooming (1<x<16).
M_WINDOW_OVR_LUT Associate a LUT with the overlay buffer (for both windowed

and auxiliary displays). Set ControlValue to the LUT
buffer’s identifier.

M_WINDOW_OVR_SHOW Show the overlay buffer: M_ENABLE (default) or M_DISABLE.
M_WINDOW_OVR_WRITE Allow annotating the displayed image non-destructively

using MIL’s overlay-display mechanism. When enabled, the
display is associated with a temporary overlay buffer, which
can be used to annotate the underlying image with an effect
called keying, which makes portions of the overlay show
through. The overlay buffer is the size of the image buffer
selected to the display. If another image buffer is selected to
the display, and this image buffer has different dimensions
than the one it is replacing, a new overlay buffer is created
and the content of the old overlay buffer is copied into the
new one; otherwise, the overlay buffer remains the same
(annotations are not cleared). The MIL identifier of the
overlay buffer can be inquired, using MdispInquire(). If
your display is CPU-assisted, the overlay effect is produced
by software:
M_ENABLE Enable MIL’s overlay-display

mechanism.
M_DISABLE Disable MIL’s overlay-display

mechanism (default).

ControlType Description and ControlValue

MdispDeselect 355

MdispDeselect

Synopsis Stop displaying an image buffer.

Format void MdispDeselect(DisplayId, ImageBufId)

Description This function stops displaying the specified image buffer on the specified
display. For windowed displays, the display is closed. For auxiliary displays,
the display is blanked.

You can only remove the entire image buffer from the display. Therefore,
when displaying a parent buffer, you cannot remove one of its child buffers
from the display.

It is not necessary to use MdispDeselect() before selecting another buffer
for display; just use MdispSelect().

The DisplayId parameter specifies the identifier of the display from which
to remove the image buffer.

The ImageBufId parameter specifies the identifier of the buffer to remove
from the display. This buffer must be a currently displayed image buffer,
with an M_DISP attribute.

See also MdispSelect()

MIL_ID DisplayId; Display identifier

MIL_ID ImageBufId; Image buffer identifier

356 MdispFree

MdispFree

Synopsis Free a display.

Format void MdispFree(DisplayId)

Description This function deallocates a display previously allocated with MdispAlloc().

The DisplayId parameter specifies the identifier of the display.

See also MdispAlloc(), MappFreeDefault()

MIL_ID DisplayId; Display identifier

MdispHookFunction 357

MdispHookFunction

Synopsis Hook a function to a display event.

Format MDISPHOOKFCTPTR MdispHookFunction(DisplayId, HookType,
 HookHandlerPtr, UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified display event. Once a hook-handler function is defined and hooked
to an event, it is automatically called when the event occurs.

Note that functions hooked to an event execute on a distinct thread. This
permits the functions to run asynchronously from the operation that fired
the event and from functions hooked to other events. Although there is a
small queue to permit a certain amount of overlap, hooked functions should
not take longer to execute than the period in which two of their associated
events can occur. You cannot determine the instance of the event that fired
the function, and even if this were possible, this information would generally
not be very useful. Typically, a hooked function performs the minimum
number of operations required and, if necessary, performs longer processes
by launching other threads.

You can hook more than one function to an event by making separate calls
to MdispHookFunction() for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.The DisplayId parameter specifies the
identifier of the target display for the hook.

MIL_ID DisplayId; Display identifier

long HookType; Type of event to hook
MDISPHOOKFCTPTR HookHandlerPtr; Pointer to hook function

void MPTYPE *UserDataPtr; User data pointer

358 MdispHookFunction

The HookType parameter specifies the display event type. This parameter
can be set to the following. Note that a hooked function must be unhooked
by combining the HookType parameter with M_UNHOOK.

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MDISPHOOKFCTPTR, MFTYPE and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype structure of this function has been kept for
backwards compatibility. However, because of the current chaining method,
the function always returns null.

See also MdispControl(), MdispInquire()

M_FRAME_START Call the hook-handler function each time a new
frame is displayed.You can only hook to this event if
DirectDraw is enabled and you are using a windowed
display.

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Reserved for future use

void MPTYPE *UserDataPtr; Pointer that was passed by
MdispHookFunction()

MdispInquire 359

MdispInquire

Synopsis Inquire about a display parameter setting.

Format long MdispInquire(DisplayId, InquireType, UserVarPtr)

Description This function inquires about a specified display parameter setting.

The DisplayId parameter specifies the identifier of the display.

The InquireType parameter specifies the display parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID DisplayId; Display identifier

long InquireType; Display parameter to inquire
void *UserVarPtr; Storage location for inquired

information

InquireType Description
M_FORMAT Display data format (MdispAlloc()).

M_FORMAT_SIZE Number of characters in the data format string
(MdispAlloc()).

M_FRAME_START_HANDLER_PTR Handler pointer hooked using MdispHookFunction()
to the start of a displayed frame (MdispSelect()).

M_FRAME_START_HANDLER_USER_PTR User pointer hooked using MdispHookFunction() to
the start of a displayed frame (MdispSelect()).

M_INIT_FLAG Display initialization flag (MdispAlloc()).
M_KEY_COLOR Keying color (MdispOverlayKey()).
M_KEY_CONDITION Keying condition (MdispOverlayKey()).
M_KEY_MASK Keying mask (MdispOverlayKey()).
M_KEY_MODE State of keying mode (MdispOverlayKey()).
M_KEY_SUPPORTED Whether overlay keying is supported by hardware

(M_YES or M_NO).
M_LUT_ID The identifier of the LUT associated with the display.
M_LUT_SUPPORTED Whether a LUT is supported on the specified display.
M_NUMBER Display rank in the system (MdispAlloc()).
M_DISPLAY_MODE Display mode. M_WINDOWED if the display is bounded

by a movable frame, or M_NON_WINDOWED if there is no
frame.

M_OWNER_SYSTEM The identifier of the system on which the display has
been allocated (MdispAlloc()).

M_PAN_X Pan X pixel offset (MdispPan()).

360 MdispInquire

M_PAN_Y Pan Y pixel offset (MdispPan()).
M_SELECTED The identifier of the image buffer currently displayed.

M_NULL is returned if no buffer is currently being
displayed (MdispSelect()).

M_SIGN Display data range (M_UNSIGNED).
M_SIZE_BAND The number of color bands the display is capable of

displaying. For windowed displays, 3 will be returned;
for auxiliary displays, 1 or 3 will be returned.

M_SIZE_BAND_LUT Number of color bands of the output LUT (if any)
associated with the display.

M_SIZE_BIT Number of bits (depth) of the display.
M_SIZE_X Display width.
M_SIZE_Y Display height.
M_TYPE Display data type (number of bits + M_UNSIGNED).
M_VGA_PIXEL_FORMAT Pixel format of the current VGA display resolution.

Allocating a display buffer with the same format will
ensure maximum performance with regard to display
updates.

M_ZOOM_X Zoom factor in X (MdispZoom()).
M_ZOOM_Y Zoom factor in Y (MdispZoom()).

The following inquire types are only available with M_WINDOWED displays:
M_THREAD_PRIORITY Thread priority.
M_VIEW_BIT_SHIFT The number of bits by which the buffer data gets shifted

when M_VIEW_MODE is set to M_BIT_SHIFT.

M_VIEW_MODE How a buffer gets remapped to the display:
M_BIT_SHIFT, or M_MULTI_BYTES.

M_WINDOW_BUF_ID Identifier of the copy of the buffer stored in the frame
buffer (display memory) or M_NULL.
On graphics controllers that do not have non-destructive
overlay capabilities, this inquire type returns 0. In this
case, M_WINDOW_OVR_BUF_ID should be used instead.

M_WINDOW_BUF_WRITE Whether direct access to the copy of the buffer stored in
the frame buffer is enabled (M_ENABLE or M_DISABLE).

M_WINDOW_CLIP_LIST Window clip list pointer (LPRGNDATA).
M_WINDOW_CLIP_LIST_SIZE Window clip list size to allocate.
M_WINDOW_COLOR Force a constant background color (M_ENABLE or

M_DISABLE).
M_WINDOW_COLOR_CHANGE Current constant color.
M_WINDOW_DDRAW_SURFACE Pointer to the DirectDraw primary surface

(LPDIRECTDRAWSURFACE) used by a display window (if
any) or M_NULL.

InquireType Description

MdispInquire 361

M_WINDOW_DIB_HEADER Pointer to the header (LPBITMAPINFO) of the DIB buffer
associated with the display window (if any) or M_NULL.

M_WINDOW_HANDLE Windows handle (HWND) of the display window.
M_WINDOW_MAXBUTTON Maximize button presence

(M_ENABLE or M_DISABLE).
M_WINDOW_MENU_BAR Menu bar presence (M_ENABLE or M_DISABLE).
M_WINDOW_MENU_BAR_CHANGE State of menu bar changing (M_ENABLE or M_DISABLE).
M_WINDOW_MINBUTTON Minimize button presence (M_ENABLE or M_DISABLE).
M_WINDOW_MOVE State of display window moving

(M_ENABLE or M_DISABLE).
M_WINDOW_OFFSET_X Display window client area offset X, relative to the top

left of the screen.
M_WINDOW_OFFSET_Y Display window client area offset Y, relative to the top

left of the screen.
M_WINDOW_OVERLAP State of display window overlapping

(M_ENABLE or M_DISABLE).
M_WINDOW_PALETTE_NOCOLLAPSE Whether the Windows palette is forced to be

non-collapsed:
M_ENABLE or M_DISABLE.

M_WINDOW_PAN_X Display window horizontal scroll bar position.
M_WINDOW_PAN_Y Display window vertical scroll bar position.
M_WINDOW_RANGE Inform the display that the displayed buffer values will

be restricted to between 10 and 245. This allows the
optimization of display update. M_ENABLE or
M_DISABLE (default).

M_WINDOW_RESIZE State of display window resizing
(M_ENABLE, M_DISABLE, M_FULL_SIZE or
M_NORMAL_SIZE).

M_WINDOW_SCROLLBAR Scroll bar presence (M_ENABLE or M_DISABLE).
M_WINDOW_SIZE_X Display window client area width.
M_WINDOW_SIZE_Y Display window client area height.
M_WINDOW_SYSBUTTON System button presence (M_ENABLE or M_DISABLE).
M_WINDOW_TITLE_BAR Title bar presence (M_ENABLE or M_DISABLE).
M_WINDOW_TITLE_BAR_CHANGE State of title bar changing

(M_ENABLE or M_DISABLE)
M_WINDOW_TITLE_NAME Window title string pointer.
M_WINDOW_TITLE_NAME_SIZE Number of characters in the window’s title string.
M_UPDATE State of window update (M_ENABLE or M_DISABLE).
M_WINDOW_ZOOM State of display window zooming

(M_ENABLE or M_DISABLE).

InquireType Description

362 MdispInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. If MdispInquire() also returns
the requested information, you can set this parameter to M_NULL instead
of passing the address of the variable.

This parameter should be a pointer to a long except when InquireType is
set to one of the following:

■ M_OWNER_SYSTEM, M_SELECTED, and M_LUT_ID, in which case it
should be a pointer to a MIL_ID.

■ M_FORMAT, in which case it should be a pointer to an array of
MIL_TEXT_CHAR.

Return value Except for the M_FORMAT inquire type, the returned value is the setting of
the requested display attribute, cast to long. For the M_FORMAT inquire
type, the returned value is M_NULL.

See also MdispAlloc(), MdispControl(), MdispSelect(), MdispPan(),
MdispOverlayKey(), MdispZoom()

M_WINDOW_ZOOM_X Window zoom X factor (controlled by zoom buttons).
M_WINDOW_ZOOM_Y Window zoom Y factor (controlled by zoom buttons).
M_WINDOW_OVR_BUF_ID Identifier of the overlay buffer associated with the

display or M_NULL.
M_WINDOW_OVR_DISP_ID Identifier of the overlay display associated with the

underlay display or M_NULL.
M_WINDOW_OVR_LUT LUT associated with the overlay buffer of the display

(only for windowed displays).
M_WINDOW_OVR_SHOW Visible state of the overlay (M_ENABLE or M_DISABLE).
M_WINDOW_OVR_WRITE Whether or not the overlay-display mechanism has been

enabled.
(M_ENABLE or M_DISABLE).

InquireType Description

MdispLut 363

MdispLut

Synopsis Associate a LUT buffer to a display.

Format void MdispLut(DisplayId, LutBufId)

Description This function associates a LUT buffer to the specified display. If and when
the display is selected, the change required to produce the display (LUT)
effect occurs. Note that physical output LUTs are not typically supported
for auxiliary displays. For windowed displays, MIL indirectly programs the
physical output LUTs through the use of a Windows palette. MIL checks the
target display to determine whether or not a LUT is supported. If not, an
error is generated. See Chapter 4:Lookup tables and Chapter 5:Displaying
an image in the MIL User Guide for more details on using LUTs.

The DisplayId parameter specifies the identifier of the display to which
the LUT buffer is copied.

The LutBufId parameter specifies the identifier of a previously allocated
LUT buffer (with an M_LUT attribute). The LUT buffer can be the default
LUT (M_DEFAULT), the pseudo LUT (M_PSEUDO), or a custom LUT buffer:

■ The default LUT (M_DEFAULT)

If you set LutBufId to M_DEFAULT for windowed displays, MIL provides
a good default logical palette for the realization of the physical output
LUTs. MIL takes into consideration the number of bands of the image,
and produces the best performance versus visual quality compromise
possible.

■ A pseudo-color LUT (M_PSEUDO)

If you set LutBufId to M_PSEUDO for windowed displays, the data is
loaded in each component of the logical palette.

■ A custom LUT buffer identifier

You can associate a custom LUT (allocated with MbufAlloc1d() or
MbufAllocColor()) with the display by setting LutBufId to the LUT’s
buffer identifier (a buffer having the M_LUT attribute).

MIL_ID DisplayId; Display identifier

MIL_ID LutBufId; LUT buffer identifier

364 MdispLut

If you associate a one-band LUT buffer with a windowed display, and then
select the display (MdispSelect()), the same data is loaded in each
component of the logical palette.

If you associate a three-band color LUT buffer (RGB) for a windowed
display, and then select the display, each band of the LUT buffer is loaded
into its corresponding component of the logical palette.

Refer to both Chapter 4: Look-up tables (LUTS), as well as Chapter 5:
Displaying an image in the MIL User Guide for a detailed description of
managing LUT buffers and achieving the appropriate display effect.

LUT buffers used for display have the following restrictions:

■ If the LUT buffer values are changed while the image is selected on the
display, the changes will not take effect until the next call is made to
MdispInquire(). That is, the LUT is not automatically updated when
the LUT buffer is modified.

■ In general, the LUT buffer will not be used when displaying a 3-band 8-bit
image under a non-8-bit display resolution.

■ In general, LUT buffers are not supported with auxiliary displays.

■ The LUT buffer must have one or three bands. Note that the number of
LUT buffer entries must be the same as the maximum number of
intensities that can be represented in the displayed buffer. In other words,
if you want to invert an 8-bit grayscale image (that is, an image that can
have 256 intensities), your LUT must also have 256 entries.

Note To obtain good results, the specified color values must be carefully selected
to provide the best color match for displaying your image. If the specified
values closely match the RGB values that occur frequently in the image to
be displayed, very good results can be obtained.

Status Hardware limitations:

Most hardware systems do not support display LUTs for auxiliary displays.

See also MbufAlloc1d(), MbufAllocColor(), MgenLutRamp(), MgenLutFunction(),
MbufPut(), MbufPut1d()

MdispOverlayKey 365

MdispOverlayKey

Synopsis Enable or disable overlay keying for the specified display.

Format void MdispOverlayKey(DisplayId, KeyMode, KeyCond,
 KeyMask, KeyColor)

Description This function enables or disables overlay keying, an operation that makes
portions of the overlay buffer transparent so that underlying areas of the
displayable image show through. This function only has an effect when the
MIL overlay-display mechanism is enabled with MdispControl().

The DisplayId parameter specifies the identifier of the display.

The KeyMode parameter specifies the keying mode. It can be set to one of
the following:

The KeyCond parameter specifies the keying condition when keying is
enabled. If keying is enabled (M_KEY_ON_COLOR), set this parameter to one
of the following:

Otherwise, set the KeyCond to M_NULL.

The KeyMask parameter specifies the mask to apply to the overlay pixels,
before performing the comparison and when keying is enabled
(M_KEY_ON_COLOR). Only overlay pixel bits corresponding to enabled mask
bits are compared with those of the keying color during the keying operation.

MIL_ID DisplayId; Display identifier

long KeyMode; Mode for keying
long KeyCond; Keying condition

long KeyMask; Keying mask to apply before comparison
long KeyColor; Keying color with which to compare

M_KEY_OFF Display the display’s overlay buffer only (no keying).
M_KEY_ON_COLOR Display the image buffer selected on the display only where the

pixels of the display’s overlay buffer are equal to KeyColor.
M_KEY_ALWAYS Display the image buffer selected on the display only.

M_EQUAL Display the image buffer where the overlay buffer’s pixels equal
the value of the KeyColor.

M_NOT_EQUAL Display the image buffer where the overlay buffer’s pixels do
not equal the value of the KeyColor.

366 MdispOverlayKey

To compare overlay pixels to the specified KeyColor value, enable all bits
in the mask (that is, set KeyMask to 0xffff).

To compare overlay pixels to a range of keying colors, enable the mask bits
in the required range and specify an appropriate KeyColor value. When in
an 8-bit display mode, pass an 8-bit value as the mask. When in any other
display mode, pass an RGB24 packed value (that is, the least-significant
byte corresponding to the red component, the next significant byte
corresponding to the green component, and the most-significant byte
corresponding to the blue component).

When keying is not enabled (M_KEY_OFF), set KeyMask to M_NULL.

Example The following portion of MIL code will display the main frame buffer when
the overlay frame buffer color is equal to 10:

MdispOverlayKey(DisplayId, M_KEY_ON_COLOR, M_EQUAL, 0xffL, 10L)

MdispPan 367

MdispPan

Synopsis Pan and scroll a display.

Format void MdispPan(DisplayId, XOffset, YOffset)

Description This function associates pan and scroll values with the specified display.
When an image buffer is selected for display, it will be panned and scrolled
on the display according to these values.

The DisplayId parameter specifies the identifier of the display.

The XOffset and YOffset parameters specify the number of pixels by which
to pan and scroll, respectively, an image buffer when it is displayed. Specify
the pan and scroll in relation to the top-left corner of the image buffer.
Specify a positive XOffset value to pan the image to the left, a positive
YOffset value to scroll the image upwards.

Note, the offsets are in image pixels (not pixels), so they are not affected by
the current zoom factor. For example, if the display has an associated zoom
factor 4, panning by an offset of one image pixel results in panning by 4 on
the display.

See also MdispZoom(), MdispControl()

MIL_ID DisplayId; Display identifier

long XOffset; X pixel offset relative to top-left corner of buffer
long YOffset; Y pixel offset relative to top-left corner of buffer

368 MdispSelect

MdispSelect

Synopsis Select an image buffer to display.

Format void MdispSelect(DisplayId, ImageBufId)

Description This function outputs the specified image buffer contents to the specified
MIL display. You can only display one buffer at a time on a specific display.

The DisplayId parameter specifies the identifier of the display.

The ImageBufId parameter specifies the image buffer to display. To be
displayable, this buffer must be an image buffer that has an M_IMAGE +
M_DISP attribute.

If the specified image buffer is smaller in size than the display size, the
border outside the image is blanked out (if the hardware supports this). If
the specified buffer is larger in size than the system display, the right and
bottom portion of the buffer, the part that exceeds the display size, is not
displayed.

Note By default, under Windows, a call to MdispSelect() creates a window
surrounding the image.

See also MdispDeselect()

MIL_ID DisplayId; Display identifier

MIL_ID ImageBufId; Image buffer identifier

MdispSelectWindow 369

MdispSelectWindow

Synopsis Select an image buffer to display in a user-defined window.

Format void MdispSelectWindow(DisplayId, ImageBufId,
 ClientWindowHandle)

Description This function displays the specified image buffer contents in the specified
user window, using the specified MIL display.

This function is valid only in a Windows environment.

The DisplayId parameter specifies the identifier of the display.

The ImageBufId parameter specifies the image buffer to display. To be
displayable, this buffer must be an image buffer that has an M_IMAGE +
M_DISP attribute.

If the specified image buffer is smaller in size than the target window size,
the border outside the image is not modified. If the specified buffer is larger
in size than the target window, the right and bottom portion of the buffer,
the part that exceeds the window, is not displayed.

The ClientWindowHandle parameter specifies the handle of the
user-defined window or child window. This window must have been created
with the Windows API functions. If this parameter is set to zero, this
function behaves like MdispSelect().

Example mwindisp.c

See also MdispSelect(), MdispDeselect()

MIL_ID DisplayId; Display identifier

MIL_ID ImageBufId; Image buffer identifier
HWND ClientWindowHandle; User-defined window handle

370 MdispZoom

MdispZoom

Synopsis Zoom a display.

Format void MdispZoom(DisplayId, XFactor, YFactor)

Description This function associates a zoom factor with the specified display. When an
image buffer is selected for display, it will be zoomed according to this factor.
The image buffer will be displayed starting from its top-left corner, unless
it has been panned and/or scrolled, using MdispPan().

The DisplayId parameter specifies the identifier of the display.

The XFactor and YFactor parameters specify the X and Y zoom factor,
respectively. You can only zoom an image by integer factors; zoom factors
between -16 and 16, inclusive (except 0), are supported.

Example mmultdis.c

See also MdispPan(), MdispControl()

MIL_ID DisplayId; Display identifier

long XFactor; X zoom factor
long YFactor; Y zoom factor

MgenLutFunction 371

MgenLutFunction

Synopsis Generate data into a LUT buffer using a specified standard mathematical
function.

Format void MgenLutFunction(LutBufId, Func, a, b, c, StartIndex,
 StartXValue, EndIndex)

Description This function generates a value for each LUT index within the specified
index range (StartIndex to EndIndex inclusive), according to the specified
mathematical function. Each function takes a value X. The StartXValue
parameter specifies the initial X value. The remaining entries of the index
range are generated by incrementing the value of X by 1 for each index.

The LutBufId parameter specifies the identifier of the LUT in which to
generate values. This parameter must be given a valid LUT buffer identifier.
Allocate a LUT buffer, using MbufAlloc1d() or MbufAllocColor(). If the
LUT is a multi-band LUT (allocated with MbufAllocColor()), the same
data is written to all bands.

The Func parameter specifies the mathematical function to use for
calculations. This parameter can be set to one of the following:

MIL_ID LutBufId; LUT buffer identifier

long Func; Function to use for calculations
double a; Function constant a

double b; Function constant b
double c; Function constant c

long StartIndex; First LUT index
double StartXValue; Initial X value

long EndIndex; Last LUT index

M_LOG a logb (x) + c

M_EXP ab x + c
M_SIN asin(bx) + c
M_COS acos(bx) + c
M_TAN atan(bx) + c
M_QUAD ax2 + bx + c

372 MgenLutFunction

The a, b, c parameters specify the function constants. For M_SIN, M_COS,
and M_TAN, X is considered to be in degrees. All results are converted to
integer by truncation, except when using a floating-point LUT buffer. Note,
if the given parameters cause an overflow or underflow, indeterminate
results will be written in the destination LUT.

The StartIndex and EndIndex specify the first and last LUT index entries
for which to generate values. The StartIndex value must be less than or
equal to the EndIndex value.

The StartXValue parameter specifies the initial value of X in the function.

See also MgenLutRamp(), MbufPut1d(), MbufPutColor(), MbufAlloc1d(),
MbufAllocColor().

MgenLutRamp 373

MgenLutRamp

Synopsis Generate ramp data into a LUT buffer.

Format void MgenLutRamp(LutId, StartIndex, StartValue, EndIndex,
 EndValue)

Description This function generates a ramp, inverse ramp, or a constant in the specified
LUT buffer region (StartIndex to EndIndex). The increment between
LUT entries is the difference between StartValue and EndValue, divided
by the number of entries.

If you need to generate a more complex LUT, use MgenLutFunction() or
generate the values with your Host system and load them into a MIL LUT
buffer, using MbufPut1d() or MbufPutColor().

The LutId parameter specifies the identifier of the LUT in which to
generate values. This parameter must be given a valid LUT buffer identifier.
Allocate a LUT buffer, using MbufAlloc1d() or MbufAllocColor().

The StartIndex and EndIndex parameters specify the first and last LUT
index entry for which to generate values. StartIndex must be less than or
equal to EndIndex.

The StartValue and EndValue parameters specify the extreme values
from which the increment is calculated. StartValue is the first LUT entry.
If both values are the same, the entire LUT range is filled with this value.
If EndValue is smaller than StartValue, an inverse ramp is generated.
These parameters accept only integer values, except when using a
floating-point LUT buffer.

Examples mdispovr.c, mnatfct.c

See also MgenLutFunction(), MbufPut1d(), MbufPutColor(), MbufAlloc1d(),
MbufAllocColor()

MIL_ID LutId; LUT identifier

long StartIndex; First LUT index
double StartValue; Start value of input range

long EndIndex; Last LUT index
double EndValue; End value of input range

374 MgenLutRamp

x

y

w

a0 a1 a2

b0 b1 b2

c0 c1 c2

xd

yd

1

= xs
x
w

a0xd a1yd a2+ +

c0xd c1yd c2+ +
--= =

MgraAlloc 375

MgraAlloc

Synopsis Allocate a graphics context.

Format MIL_ID MgraAlloc(SystemId, GraphContIdPtr)

Description This function allocates a graphics context, which specifies drawing and text
parameters for use in subsequent MIL graphic functions.

Upon allocation of a graphics context, the drawing and text parameters are
set to the following default values:

You can modify these values, using MgraColor(), MgraBackColor(),
MgraFont(), and MgraFontScale(), or inquire about the current values,
using MgraInquire().

You can set the attributes of the graphic context (for example, background
transparency), using MgraControl().

When a graphics context is no longer required, release it, using
MgraFree().

The SystemId parameter specifies the system on which the graphics
context will be allocated. This parameter must be set to a valid system
identifier, M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST
to allocate on the default Host system of the current MIL application.
Specify M_DEFAULT to have MIL select the most appropriate system on
which to allocate the graphics context (it can be the default Host system or
any already allocated system).

The GraphContIdPtr parameter specifies the address of the variable in
which the graphics context identifier is to be written. Since the MgraAlloc()
function also returns the buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

MIL_ID SystemId; System identifier

MIL_ID *GraphContIdPtr; Storage location for graphics context
identifier

Foreground color 0xFFFFFFFF

Background color 0x00000000
Font M_FONT_DEFAULT_SMALL

Font scale X = 1.0, Y = 1.0

376 MgraAlloc

Note, upon allocation of an application, a default graphics context is
automatically allocated. Rather than using MgraAlloc() to allocate a
graphics context, you can use this default graphics context, by specifying
M_DEFAULT wherever a graphics context identifier is required.

Return value The returned value is the graphics context identifier. If allocation fails,
M_NULL is returned.

See also MgraFree(), MgraColor(), MgraBackColor(), MgraFont(), MgraFontScale(),
MgraInquire()

MgraArc 377

MgraArc

Synopsis Draw an arc.

Format void MgraArc(GraphContId, DestImageBufId, XCenter, YCenter,
 XRad, YRad, StartAngle, EndAngle)

Description This function draws an elliptic arc based on an ellipse centered at (XCenter,
YCenter) with radii XRad and YRad. The arc is defined by the start angle
StartAngle and the end angle EndAngle. The arc is drawn with the
foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the image buffer
in which to draw.

The XCenter and YCenter parameters specify the X and Y coordinates of
the arc center, relative to the top-left corner of the specified target buffer.

The XRad and YRad parameter specify the elliptic arc radii. The radii
should be given in pixels and must be greater than 0.

The StartAngle and EndAngle specify the angles at which to start and
end drawing the arc, respectively, moving in a counter-clockwise direction.
Express angles in degrees in relation to the positive X-axis.

If part of the arc falls outside of the specified target buffer, that part is
clipped off.

Examples mfft.c, mmeas.c

See also MgraArcFill()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XCenter; X-coordinate of arc center

long YCenter; Y-coordinate of arc center
long XRad; Horizontal radius of elliptic arc

long YRad; Vertical radius of elliptic arc
double StartAngle; Starting angle relative to the positive X-axis

double EndAngle; Ending angle relative to the positive X-axis

378 MgraArcFill

MgraArcFill

Synopsis Draw a filled elliptic arc.

Format void MgraArcFill(GraphContId, DestImageBufId, XCenter,
 YCenter, XRad, YRad, StartAngle, EndAngle)

Description This function draws a filled elliptic arc based on an ellipse centered at
(XCenter, YCenter) with radii XRad and YRad. The arc is defined by the
start angle StartAngle and end angle EndAngle. The arc is drawn and
filled with the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application will be used.

The DestImageBufId parameter specifies the identifier of the image buffer
in which to draw.

The XCenter and YCenter parameters specify the X and Y coordinates of
the arc center relative to the top-left corner of the specified target buffer.

The XRad and YRad parameters specify the elliptic arc radii. The radii
should be given in pixels and must be greater than 0.

The StartAngle and EndAngle specify the angles at which to start and
end drawing the arc, respectively, moving in a counter-clockwise direction.
Express angles in degrees in relation to the positive X-axis.

If part of the arc falls outside of the specified target buffer, that part is
clipped off.

Example mdisplay.c

See also MgraArc(), MgraFill()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XCenter; X-coordinate of arc center

long YCenter; Y-coordinate of arc center
long XRad; Horizontal radius of elliptic arc

long YRad; Vertical radius of elliptic arc
double StartAngle; Starting angle relative to the positive X-axis

double EndAngle; Ending angle relative to the positive X-axis

MgraBackColor 379

MgraBackColor

Synopsis Sets the background color of a graphics context.

Format void MgraBackColor(GraphContId, BackgroundColor)

Description This function sets the background color of a specified graphics context.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the background color. This parameter can
be set to M_DEFAULT, in which case the default graphics context of the
current MIL application is used.

The BackgroundColor parameter specifies the background color. Set this
parameter as follows:

■ When using the graphics context to draw in a 1-band buffer, set this
parameter to any value. This value will be cast to the type of the
destination buffer.

■ When using the graphics context to draw in a multi-band buffer with a
grayscale background value, set this parameter to any value. This value
will be cast to the type of the destination buffer’s bands and replicated in
each band.

■ When using the graphics context to draw in an 8-bit 3-band buffer with
an RGB background value, set this parameter using the following macro:

M_RGB888(red component, green component, blue component)

■ When using the graphics context to draw in a 16-bit or 32-bit multi-band
buffer with a color background value, use MgraControl().

Example mcode.c

See also MgraColor(), MgraAlloc(), MgraInquire(), MgraControl()

MIL_ID GraphContId; Graphics context identifier

double BackgroundColor; Background drawing and text color

380 MgraClear

MgraClear

Synopsis Clear an image buffer to a specified foreground color.

Format void MgraClear(GraphContId, DestImageBufId)

Description This function clears the entire specified buffer to the foreground color
specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer to
clear. This parameter must be given a valid image buffer identifier.

See also MgraColor()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier

MgraColor 381

MgraColor

Synopsis Sets the foreground color of a graphics context.

Format void MgraColor(GraphContId, ForegroundColor)

Description This function sets the foreground color of a specified graphics context.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the foreground color. This parameter can be
set to M_DEFAULT, in which case the default graphics context of the current
MIL application is used.

The ForegroundColor parameter specifies the foreground color. Set this
parameter as follows:

■ When using the graphics context to draw in a 1-band buffer, set this
parameter to any value. This value will be cast to the type of the
destination buffer.

■ When using the graphics context to draw in a multi-band buffer with a
grayscale foreground value, set this parameter to any value. This value
will be cast to the type of the destination buffer’s bands and replicated in
each band.

■ When using the graphics context to draw in an 8-bit 3-band buffer with
an RGB foreground value, set this parameter using the following macro:

M_RGB888(red component, green component, blue component)

■ When using the graphics context to draw in a 16-bit or 32-bit multi-band
buffer with a color foreground value, use MgraControl().

Examples mblob.c, mcalib.c, mcode.c, mdisplay.c, mmeas.c, mmeasmul.c, mocrread.c,
mwarp.c

See also MgraBackColor(), MgraAlloc(), MgraInquire(), MgraControl()

MIL_ID GraphContId; Graphics context identifier

double ForegroundColor; Foreground drawing and text color

382 MgraControl

MgraControl

Synopsis Control the specified graphic context.

Format void MgraControl(GraphContId, ControlType, ControlValue)

Description This function allows you to set the attributes of a graphic context.

The GraphContId parameter specifies the identifier of the graphic context
(MgraAlloc()). To control the default graphic context of the current MIL
application, set this parameter to M_DEFAULT.

The ControlType and ControlValue parameters specify the graphic
features to control and the values needed for the control. These two
parameters can be set to one of the following combinations:

For M_COLOR and M_BACKCOLOR, specify a ControlValue as follows:

■ When using the graphics context to draw in a 1-band buffer, set
ControlValue to any value. This value will be cast to the type of the
destination buffer.

MIL_ID GraphContId; Graphic context identifier

long ControlType; Control type
double ControlValue; Control value

ControlType Description & ControlValue
M_BACKGROUND_MODE Controls the setting of the background color on

the drawing surface.
M_OPAQUE Fill background with the

current background color
before drawing text. This is
the default value
(M_DEFAULT).

M_TRANSPARENT Do not change background
before drawing text. This
creates a transparent
background for printed
characters.

M_COLOR Sets the foreground color of a specified graphics
context.

M_BACKCOLOR Sets the background color of a specified
graphics context.

MgraControl 383

■ To specify a grayscale value when using the graphics context to draw in
a multi-band buffer, set ControlValue to any value. This value will be
cast to the type of the destination buffer’s bands and replicated in each
band.

■ To specify an RGB value when using the graphics context to draw in an
8-bit 3-band buffer, set ControlValue using the following macro:

M_RGB888(red component, green component, blue component)

■ To specify a color value when using the graphics context to draw in a 16-bit
or 32-bit multi-band buffer, you must call MgraControl() for each color
component (R,G, and B). Add M_RED, M_GREEN, or M_BLUE to M_COLOR
or M_BACKCOLOR to specify the component. Set ControlValue to any
value; this value will be cast to the type of the destination buffer’s bands.
For example, you would make the following call to set the red color
component:

MgraControl(M_DEFAULT, M_COLOR+M_RED, red color component)

Note that you can use the M_RED, M_GREEN, and M_BLUE constants even
when using the graphics context to draw in an 8-bit multi-band buffer.

Examples mcalib.c, mdispovr.c

See also MgraAlloc(), MgraBackColor(), MgraColor()

384 MgraDot

MgraDot

Synopsis Draw a dot.

Format void MgraDot(GraphContId, DestImageBufId, XPos, YPos)

Description This function draws a dot at the specified drawing position, using the
foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XPos and YPos parameters specify the X and Y coordinates of the
drawing position. The given coordinate is relative to the top-left corner of
the specified target buffer. It should be valid in the specified image buffer;
otherwise, nothing will be drawn.

See also MbufPut2d(), MbufPutColor()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XPos; X position of dot

long YPos; Y position of dot

MgraFill 385

MgraFill

Synopsis Perform a boundary-type seed fill.

Format void MgraFill(GraphContId, DestImageBufId, XStart, YStart)

Description This function performs a boundary-type seed fill. It fills in an area of the
target buffer, with the foreground color specified in the graphics context,
starting from the specified seed position. Filling occurs on adjacent pixels
(vertically and horizontally to original seed pixel) that have the same value
as the original seed pixel.

If the source buffer is a multi-band buffer, this function will process each
band separately. This means that each band of the adjacent pixels will be
compared with the corresponding band of the seed pixel. This can produce
strange results if, for example, you try to fill the inside of a red circle with
blue. The blue will spread to the whole image since the red circle does not
exist in the blue band.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the X and Y coordinates of the
seed position. If the specified point is not within an enclosed area, filling
occurs until the boundaries of the buffer are encountered. The given
coordinate is relative to the top-left corner of the specified target buffer. It
should be valid in the specified image buffer; otherwise, the operation is not
performed.

See also MgraArcFill(), MgraRectFill()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of seed position

long YStart; Y-coordinate of seed position

386 MgraFont

MgraFont

Synopsis Associate a text font with a graphics context.

Format void MgraFont(GraphContId, FontName)

Description This function associates a character font with the specified graphics context
for use with subsequent MgraText() function calls.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the character font. This parameter can be
set to M_DEFAULT, in which case, the default graphics context of the current
MIL application is used.

The FontName parameter specifies the font with which to write text. This
parameter can be set to one of the following:

Examples mocrfont.c, mocrread.c

See also MgraFontScale(), MgraAlloc(), MgraText(), MgraInquire()

MIL_ID GraphContId; Graphics context identifier

long FontName; Character font

FontName Description
M_FONT_DEFAULT_LARGE Default font with 16x32 pixel wide

characters.
M_FONT_DEFAULT_MEDIUM Default font with 12x24 pixel wide

characters.
M_FONT_DEFAULT_SMALL Default font with 8x16 pixel wide

characters.
M_FONT_DEFAULT In general corresponds to

M_FONT_DEFAULT_SMALL.

MgraFontScale 387

MgraFontScale

 Synopsis Set the font scale of a graphics context.

Format void MgraFontScale(GraphContId, XFontScale, YFontScale)

Description This function sets the font scale of the specified graphics context for use
with subsequent MgraText() function calls.

The GraphContId parameter specifies the identifier of the graphics
context for which to set the font scale. This parameter can be set to
M_DEFAULT, in which case the default graphics context of the current MIL
application is used.

The XFontScale and YFontScale parameters are used to multiply the
width and height of the font characters, respectively. Each of these
parameters can be independently set to any positive floating point value.
The default X and Y scale factors are 1.0.

Note, using a font with a scale of 1.0 accelerates text drawing.

Example mocrfont.c

See also MgraFont(), MgraAlloc(), MgraText(), MgraInquire()

MIL_ID GraphContId; Graphics context identifier

double XFontScale; Font scaling factor in X
double YFontScale; Font scaling factor in Y

388 MgraFree

MgraFree

Synopsis Free a graphics context.

Format void MgraFree(GraphContId)

Description This function deallocates a graphics context previously allocated with
MgraAlloc().

The GraphContId parameter specifies the identifier of the graphics
context to deallocate. If M_DEFAULT is specified, an error will occur.

See also MgraAlloc()

MIL_ID GraphContId; Graphics context identifier

MgraInquire 389

MgraInquire

Synopsis Inquire about the graphics parameters.

Format void MgraInquire(GraphContId, InquireType, UserVarPtr)

Description This function inquires about a graphic parameter in the specified graphics
context.

The GraphContId parameter specifies the identifier of the graphics
context on which to perform the inquiry. This parameter can be set to
M_DEFAULT, in which case the default graphics context of the current MIL
application is used.

The InquireType parameter specifies the graphic parameter about which
to inquire. This parameter can be set to one of the following values:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. This variable should be defined
as follows:

MIL_ID GraphContId; Graphics context identifier

long InquireType; Graphic parameter to inquire
void *UserVarPtr; Storage location for inquiry result

InquireType Description
M_COLOR Foreground color.
M_BACKCOLOR Background color.
M_BACKGROUND_MODE Background mode.
M_FONT Character font.
M_FONT_X_SCALE Font scaling factor in X.
M_FONT_Y_SCALE Font scaling factor in Y.
M_OWNER_SYSTEM MIL identifier (MIL_ID) of the system on

which the graphics context has been
allocated (MgraAlloc()).

InquireType Pointer to a:
M_COLOR double
M_BACKCOLOR double
M_BACKGROUND_MODE long
M_FONT long

390 MgraInquire

To inquire the color value used in the graphics context for a 16-bit or 32-bit
multi-band buffer, you must inquire each color component (R,G, and B)
separately. Add M_RED, M_GREEN, or M_BLUE to M_COLOR or
M_BACKCOLOR to specify the component. For example, you would make the
following call to inquire the red color component:

MgraInquire(M_DEFAULT, M_COLOR+M_RED, &red color component)

See also MgraColor(), MgraBackColor(), MgraFont(), MgraFontScale()

M_FONT_X_SCALE double
M_FONT_Y_SCALE double
M_OWNER_SYSTEM MIL_ID

InquireType Pointer to a:

MgraLine 391

MgraLine

 Synopsis Draw a line.

Format void MgraLine(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a line starting and ending at the specified coordinates,
using the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case, the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of one line
extremity, while XEnd and YEnd specify the coordinates of the other. The
given coordinates are relative to the top-left corner of the specified target
buffer. They should be valid in the specified buffer; otherwise, the line is
clipped outside the buffer boundaries.

Examples mblob.c, mcalib.c, mmeas.c, mmeasmul.c, mpatrot.c, mwarp.c

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of start of line position

long YStart; Y-coordinate of start of line position
long XEnd; X-coordinate of end of line position

long YEnd; Y-coordinate of end of line position

392 MgraRect

MgraRect

Synopsis Draw a rectangle.

Format void MgraRect(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a rectangle starting from the specified top-left
coordinate to the specified bottom-right corner. The rectangle is drawn in
the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the top-left
corner of the rectangle, XEnd and YEnd specify the coordinates of the
bottom-right corner. The given coordinates are relative to the top-left corner
of the specified target buffer. They should be valid in the specified buffer;
otherwise, the rectangle is clipped outside the buffer boundaries.

Examples mmeas.c, mmeasmul.c, mrestmod.c, msearch.c, mshift.c

See also MgraRectFill()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of top-left rectangle corner

long YStart; Y-coordinate of top-left rectangle corner
long XEnd; X-coordinate of bottom-right rectangle corner

long YEnd; Y-coordinate of bottom-right rectangle corner

MgraRectFill 393

MgraRectFill

Synopsis Draw a filled rectangle.

Format void MgraRectFill(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a filled rectangle starting from the specified top-left
coordinate to the specified bottom-right corner. The rectangle is drawn and
filled in the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the top-left
corner of the rectangle, XEnd and YEnd specify the coordinates of the
bottom-right corner. The given coordinates are relative to the top-left corner
of the specified target buffer. They should be valid in the specified buffer;
otherwise, the rectangle is clipped outside the buffer boundaries.

See also MgraRect(), MgraFill()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of top-left rectangle corner

long YStart; Y-coordinate of top-left rectangle corner
long XEnd; X-coordinate of bottom-right rectangle corner

long YEnd; Y-coordinate of bottom-right rectangle corner

394 MgraText

MgraText

Synopsis Write text.

Format void MgraText(GraphContId, DestImageBufId, XStart, YStart,
 String)

Description This function writes the specified string to the specified buffer starting at
the specified writing position, using the parameters (colors, font, and size)
defined in the graphics context. Use MgraFont() and MgraFontScale()
to modify the font and size. Use MgraControl() to obtain a transparent
background for printed characters.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case, the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to write. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the position
at which to start writing the top-left corner of the first character. The given
coordinates are relative to the top-left corner of the buffer. They should be
valid in the specified buffer; otherwise, the text is clipped.

The String parameter specifies the address of the string that must be
written in the destination buffer. There is no restriction on the length of the
string, except that the string must be null (\0) terminated.

Examples mcalib.c, mcode.c, mdispovr.c, mocrfont.c, mocrread.c, mstart.c, mthread.c,
mwindisp.c

See also MgraFont(), MgraFontScale(), MgraControl()

MIL_ID GraphContId; Graphics context identifier

MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of writing position

long YStart; Y-coordinate of writing position
MIL_TEXT_PTR String; Null terminated string

MsysAlloc 395

MsysAlloc

Synopsis Allocate a hardware system.

Format MIL_ID MsysAlloc(SystemType, SystemNum, InitFlag,
 SystemIdPtr)

Description This function allocates a hardware system (board set, Host system, and any
available graphics controller) so that it can be used by subsequent MIL
functions. Upon execution of this function, MIL ensures that it can open
communication with the system before allocating it and generates an error
if it cannot.

A system must be allocated before any buffers, displays, or digitizers can be
allocated on it. Before allocating a system, an application must be allocated,
using MappAlloc() or MappAllocDefault().

Note, upon allocation of an application, a default Host system is
automatically allocated. Rather than using MsysAlloc() to allocate a Host
system, you can use this default Host system, by specifying
M_DEFAULT_HOST wherever a Host system identifier is required.

When you no longer need a particular system, free it using MsysFree().

The SystemType parameter specifies the type of system to allocate. Set
this parameter to one of the following values:

void *SystemType; Type of system to allocate

long SystemNum; System number
long InitFlag; Initialization flag

MIL_ID *SystemIdPtr; Storage location for system identifier

SystemType Type of system to allocate
M_SYSTEM_SETUP System selected in the setup utility.
M_SYSTEM_HOST Host type system.
M_SYSTEM_VGA VGA type system.
M_SYSTEM_METEOR_II Meteor-II type system.
M_SYSTEM_METEOR_II_1394 Meteor-II /1394 type system.
M_SYSTEM_METEOR_II_DIG Meteor-II /Digitial type system.
M_SYSTEM_METEOR_II_CL Meteor-II /Camera Link type system.
M_SYSTEM_ORION Orion type system.

396 MsysAlloc

The SystemNum parameter specifies the number (or rank) of the target
board of the specified system type. This parameter can be set to one of the
following:

The InitFlag parameter specifies the type of initialization to perform on
the selected system. This parameter can be set to one of the following:

You can control the use of DirectDraw for all displays allocated for the
system. To do so, add one of the following to InitFlag:

Refer to the MIL/MIL-Lite Board-Specific Notes for possible additional
information that applies to your particular system.

The SystemIdPtr parameter specifies the address of the variable in which
to write the system identifier. Since the MsysAlloc() function also returns
the system identifier, you can set this parameter to M_NULL. If allocation
fails, M_NULL is written as the identifier.

Return value The returned value is the system identifier. If allocation fails, M_NULL is
returned.

See also MsysFree()

M_SYSTEM_GENESIS Genesis type system.
M_SYSTEM_CORONA_II Corona-II type system.

M_DEFAULT Default board.
M_DEV0 The first board of the specified system type.
..., The nth board of the specified system type.
M_DEV15 The sixteenth board of the specified system type.

M_COMPLETE Perform a complete initialization of the system: initialize
the system to its default state and download any required
resident software. At least one complete initialization is
necessary after you power-up your system.

M_PARTIAL Initialize the system with its default state, but do not
download any resident software (which can take a few
seconds).

M_DEFAULT Same as M_COMPLETE.

M_DDRAW Enable the use of DirectDraw by the system.
M_NO_DDRAW Disable the use of DirectDraw by the system.

SystemType Type of system to allocate

MsysControl 397

MsysControl

Synopsis Control system behavior.

Format void MsysControl(SystemId, ControlType, ControlValue)

Description This function controls the system behavior. For example, it can be used to
control where buffers allocated on the specified system will be processed.
Generally, when you allocate buffers on a specific system, processing is done
on that system or on the Host system if it is more appropriate. However, you
can use this function to force all processing on a specific system.

The SystemId parameter specifies the identifier of the system on which to
set the control.

The ControlType and ControlValue parameters specify the type of event
to control and the associated value, respectively. These parameters can be
set to any valid control type and control value combination that is supported
by the system (refer to the appropriate MIL Board-Specific Notes chapter),
or to one of the following combinations:

MIL_ID SystemId; System identifier

long ControlType; Type of event to control
long ControlValue; Flag to control event

ControlType ControlValue & Description
M_PROCESSING_SYSTEM MIL identifier of

the system to use
for processing, cast to
long.

Force the processing of buffers,
allocated on the system specified
by SystemId, to be performed by
the system specified by the
control value.

M_DEFAULT_HOST Force the processing of buffers,
allocated on the system specified
by SystemId, to be performed by
the default Host system.

M_DEFAULT Re-establish the default
processing system selected by
MIL at system allocation.

*Note, even when you force processing to be performed by
a specific system, some operations might not execute
successfully if the specific system does not completely
support the requested operation. This can occur even if
processing compensation is enabled.

398 MsysControl

M_LIVE_GRAB_MOVE_UPDATE Specifies whether to copy the current image from its
previous (window) location to the location of the
displaced window before restarting the grab
operation (the grab is stopped during window
displacement). This is particularly useful when
grabbing from a triggered camera, since a trigger is
probably not issued as often as the window is
displaced. Therefore, the window will be empty after
its displacement unless
M_LIVE_GRAB_MOVE_UPDATE is enabled.
M_ENABLE Perform a copy between the

windows. (Default for triggered
cameras)

M_DISABLE Do not perform a copy between
the windows. (Default for
non-triggered cameras)

M_LIVE_GRAB_NO_TEARING Specifies whether or not no-tearing mode is enabled with
live grabs. This mode should be enabled before selecting
any buffer to the display.
This mode requires special hardware. A Matrox
Millennium G400, G450, or G550 graphics controller must
be used. If this control type is used and is not supported,
an error will be produced.
M_ENABLE No-tearing mode is enabled with

live grabs.
M_DISABLE No-tearing mode is disabled with

live grabs.(default)
M_LAST_GRAB_IN_TRUE_BUFFER Specifies, for windowed displays (M_WINDOWED), whether

a snapshot grab is automatically performed in the true
grab buffer at the end of a live grab operation. You can
override this default, in which case, the true buffer will not
contain the grabbed data. This default can be overridden
by setting the ControlType to M_DISABLE:
M_ENABLE Grab last frame in true grab

buffer (default).
M_DISABLE Don’t grab last frame in true grab

buffer.
M_NATIVE_MODE_ENTER M_DEFAULT Signal to MIL that the system is

entering the system's native
mode.

M_NATIVE_MODE_LEAVE M_DEFAULT Signal to MIL that the system is
exiting the system's native mode.

ControlType ControlValue & Description

MsysControl 399

M_USE_MMX Specifies whether MMX opcodes are used when processing
is done on the specified system.
M_DEFAULT Like M_ENABLE when an MMX

processor is detected, otherwise
like M_DISABLE.

M_ENABLE Use the MMX opcodes to
accelerate processing.

M_DISABLE Never use the MMX opcodes.
M_USE_SSE Control the use of SSE code when processing is done

on the specified system.
M_DEFAULT When an SSE processor is

detected, this control type is
similar to M_ENABLE;
otherwise, it is similar to
M_DISABLE.

M_ENABLE Use the SSE opcodes to
accelerate processing. Note,
an error will be generated if no
SSE processor is detected or if
the operating system does not
support it.

M_DISABLE Never use the SSE opcodes.
M_USE_SSE2 Control the use of SSE2 code when processing is

done on the specified system.
M_DEFAULT M_ENABLE when a SSE2

processor is detected,
otherwise M_DISABLE.

M_DISABLE Never use SSE2 opcodes.
M_ENABLE The SSE2 opcode will be used

to accelerate processing. An
error will be generated if no
SSE2 processor is detected or
if the OS does not support
it.(One should use M_DEFAULT
instead).

ControlType ControlValue & Description

400 MsysControl

If your graphics controller does not have non-destructive overlay capabilities, MIL can
typically still grab live into a windowed display. When necessary, the grab will switch to
pseudo-live (simulating a live grab by grabbing into the Host buffer and updating the
display) to prevent the grab from overwriting another window. If there is an instance
when automatic live-to-pseudo-live switching does not happen or you want to override the
default behavior, you can use the following ControlType and ControlValue parameter
settings.
M_LIVE_GRAB Specifies whether to perform a live grab whenever

possible, or to force a pseudo-live grab, when
grabbing continuously into a displayable buffer.
M_ENABLE Live grab is enabled (default).
M_DISABLE Live grab is disabled.

M_PSEUDO_LIVE_GRAB_WHEN_OVERLAPPED

Set whether to pause the grab or switch to a
pseudo-live grab when the live grab is interrupted
due to one of the above-mentioned conditions (for
example, if the window displaying the grab is
overlapped by a menu).
M_ENABLE Pseudo-live (default).
M_DISABLE Pause grab.

M_STOP_LIVE_GRAB_WHEN_DISABLED Set whether or not to switch to a pseudo-live grab
while the display window is disabled (for example,
when a pop-up dialog box is opened):
M_ENABLE Pseudo-live while the display

window is disabled (default).
M_DISABLE Force live.

M_STOP_LIVE_GRAB_WHEN_INACTIVE Set whether or not to switch to a pseudo-live grab
while the display window is inactive (that is, while it
does not have the focus):
M_ENABLE Pseudo-live while the display

window is inactive (default).
M_DISABLE Force live.

M_STOP_LIVE_GRAB_WHEN_MENU Set whether or not to switch to a pseudo-live grab
while an opened menu overlaps the display window:
M_ENABLE Pseudo-live while menu

overlaps the display window
(default).

M_DISABLE Force live.

ControlType ControlValue & Description

MsysControl 401

See also MappGetError(), MappHookFunction(), MappControl()

M_PSEUDO_LIVE_GRAB Specifies whether to perform a pseudo-live grab when a
live grab is enabled but is not possible. If a live grab is
enabled, and can be performed, it will take priority over a
pseudo-live continuous grab, even if a pseudo-live grab is
enabled. A continuous grab is done pseudo-live only when
it is enabled and it is not possible to perform a live grab. If
pseudo-live grabbing is disabled and a live grab cannot be
performed, a continuous grab will be paused until
conditions under which a live grab can be performed are
achieved (or the grab times out).
M_ENABLE Pseudo-live grab is enabled

(default).
M_DISABLE Pseudo-live grab is disabled.

M_USE_FULL_OPTIMIZATION Control the use of all optimizations available on the
specified system.

M_DEFAULT M_ENABLE

M_ENABLE All available optimization will be
used to accelerate processing. No
errors will be reported since only
the optimization supported by the
system will be activated.

M_DISABLE Disable all optimization. Only
C++ code will be used (no SIMD
optimization).

ControlType ControlValue & Description

402 MsysFree

MsysFree

Synopsis Free a system.

Format void MsysFree(SystemId)

Description This function deallocates a system previously allocated with MsysAlloc().

Prior to freeing a system, ensure that all buffers, displays, and digitizers
allocated on the system are freed.

The SystemId parameter specifies the identifier of the system to free.

See also MsysAlloc()

MIL_ID SystemId; System identifier

MsysInquire 403

MsysInquire

Synopsis Inquire about a system parameter setting.

Format long MsysInquire(SystemId, InquireType, UserVarPtr)

Description This function inquires about the specified system parameter setting.

The SystemId parameter specifies the system identifier.

The InquireType parameter specifies the system parameter about which
to inquire. Some of the values are not supported by all platforms. This
parameter can be set to one of the following values:

MIL_ID SystemId; System identifier

long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_OWNER_APPLICATION The MIL identifier (MIL_ID) of the application on

which the system has been allocated.
M_SYSTEM_TYPE The type of system allocated:

M_SYSTEM_HOST_TYPE, M_SYSTEM_VGA_TYPE,
M_SYSTEM_METEOR_II_1394_TYPE,
M_SYSTEM_METEOR_II_TYPE,
M_SYSTEM_METEOR_II_DIG_TYPE,
M_SYSTEM_METEOR_II_CL_TYPE,
M_SYSTEM_ORION_TYPE,
M_SYSTEM_GENESIS_TYPE, or
M_SYSTEM_CORONA_II_TYPE.

M_SYSTEM_NAME This inquire type copies the system’s name to the
user-supplied array, as a string. Note that this
inquire type is available when using any supported
Matrox Imaging board.

M_SYSTEM_TYPE_PTR Pointer to a function that can communicate with
the system (board). This inquiry type returns the
actual system type pointer that was passed to the
MsysAlloc() function upon system allocation. It is
preferable to use M_SYSTEM_TYPE_PTR to inquire
about the type of system allocated.

M_NUMBER Board number of the system (MsysAlloc()).
M_INIT_FLAG System initialization flag (MsysAlloc()).
M_DISPLAY_NUM Number of CRT controllers available on your

Matrox imaging board.
M_DIGITIZER_NUM Number of digitizers available on the system.
M_PROCESSOR_NUM Number of processors available on the system.

404 MsysInquire

M_PROCESSING_SYSTEM_TYPE Processing system type used to process buffers
allocated on that system (MsysControl()). Either
M_SYSTEM_HOST_TYPE, or
M_SYSTEM_GENESIS_TYPE will be returned.

M_PROCESSING_SYSTEM Identifier of the processing system.
M_LOCATION Location of the specified system.

M_LOCAL The system is located on the local
computer.

M_REMOTE The system is located on a remote
computer.

M_DCF_SUPPORTED Whether the system supports downloadable
digitizer configuration format (.dcf) files.

M_USE_MMX State of use of MMX code for processing on the
specified system (M_ENABLE or M_DISABLE).

M_USE_SSE State of use of SSE code for processing on the
specified system (M_ENABLE or M_DISABLE).

M_PHYSICAL_ADDRESS_VGA The physical address of the VGA frame buffer. If
the VGA is not a Matrox VGA, M_NULL is returned.

M_COMPRESSION_SUPPORTED Whether the system supports compression and
decompression of images (M_YES or M_NO).
MIL-Lite does not support JPEG 2000
compression, and requires dedicated
hardware for JPEG compression. Under the full
version of MIL, compression and decompression is
supported, whether or not dedicated hardware is
present.

M_LIVE_GRAB Whether the live grab is enabled (M_ENABLE or
M_DISABLE).

M_PSEUDO_LIVE_GRAB Whether the pseudo live grab is enabled
(M_ENABLE or M_DISABLE).

M_PSEUDO_LIVE_GRAB_WHEN_OVERLAPPED A switch is made to a pseudo-live grab when
the display window is overlapped by another
window:
M_ENABLE or M_DISABLE.

M_STOP_LIVE_GRAB_WHEN_DISABLED Grabbing is frozen when the display window
is disabled:
M_ENABLE or M_DISABLE.

M_STOP_LIVE_GRAB_WHEN_INACTIVE Grabbing is frozen when the display window
is inactive:
M_ENABLE or M_DISABLE.

InquireType Description

MsysInquire 405

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. When MsysInquire() also
returns the requested information, you can set this parameter to M_NULL.

The variable should be a pointer to a long except for the following inquire
types:

■ M_OWNER_APPLICATION and M_PROCESSING_SYSTEM_TYPE, which
should be a pointer to a MIL_ID.

■ M_SYSTEM_NAME, which should be a pointer to an array of
MIL_TEXT_CHAR. The array of MIL_TEXT_CHAR must be large
enough to hold the name of the system.

■ M_SYSTEM_TYPE_PTR, which should be a void pointer.

Return value Except for M_SYSTEM_NAME, the returned value is the requested system
information, cast to long. For M_SYSTEM_NAME, the returned value is
M_NULL.

See also MsysAlloc(), MsysControl()

M_STOP_LIVE_GRAB_WHEN_MENU Grabbing is frozen when the display window
is overlapped by a menu:
M_ENABLE or M_DISABLE.

M_LIVE_GRAB_NO_TEARING Whether no-tearing mode is enabled with live
grabs.

M_LIVE_GRAB_MOVE_UPDATE Whether the live grab move update is enabled
(M_ENABLE or M_DISABLE).

M_LAST_GRAB_IN_TRUE_BUFFER A last grab is done to the true buffer at the end of a
continuous grab:
 M_ENABLE or M_DISABLE.

InquireType Description

406 MsysInquire

Appendices

Appendix A: The default
setup configuration file

This appendix discusses the main defaults specified in the
setup configuration file.

410 Appendix A: The default setup configuration file

The default setup configuration file
When you use the MappAllocDefault() macro to initialize the
global state of the library, open communication channels with
any required hardware system, download any required
resident software to this hardware, allocate an image buffer,
display controller or digitizer, the macro uses the defaults
specified in the milsetup.h file. This file is set up upon
installation with the install utility. It is an ASCII file that can
also be modified manually. You should review the contents of
this file prior to using the MappAllocDefault() macro to
ensure that the defaults are as required. You can modify these
defaults to a preferred default setup. This appendix discusses
each of the main defaults in detail so that you can modify them,
if required, by altering their predefined values. For a complete
listing of all the defaults, refer to the milsetup.h file.

The setup flag

The M_MIL_USE_SETUP default determines whether
milsetup.h has already been included. This default should
always be set to 1L.

The native mode flag

The M_MIL_USE_NATIVE default determines whether native
mode code specific to a system can be used in the MIL
application. When this default is set to 1L, MIL assumes that
native-mode code may be used and will include associated
prototypes and defines.

Default initialization flag

���
���5'672�52'%+(+'&�(.#)��
���#EVKXCVG�QT�FGCEVKXCVG�/+.�WUG�UGVWR�HNCI�����������������������
�FGHKPG�/A/+.A75'A5'672����������.

���
���0#6+8'�/1&'�241)4#//+0)�(.#)����������������������������������
���#EVKXCVG�QT�FGCEVKXCVG�PCVKXG�OQFG�RTQITCOOKPI����������������
�FGHKPG�/A/+.A75'A0#6+8'�����.

���
���&'(#7.6�56#6'�+0+6+#.+<#6+10�(.#)�����������������������������
�FGHKPG�/A5'672�������������/A%1/2.'6'

The default setup configuration file 411

The M_SETUP default determines the type of initialization to
perform if it is specified by the MappAllocDefault() InitFlag
parameter. M_SETUP can be set to M_COMPLETE (initialize
MIL and do a complete initialization of the specified system) or
M_PARTIAL (initialize MIL but don’t fully initialize the system).
In general, set this parameter to M_COMPLETE if initialization
time is not critical.

Default system

The above defaults determine the target system (or board) that
will be allocated by MappAllocDefault(). The
MappAllocDefault() macro calls the MsysAlloc() command
to allocate the target system. M_DEF_SYSTEM_TYPE specifies
the system type, M_DEV_SYSTEM_NUM specifies its device
number in your Host system, and M_DEF_SYSTEM_SETUP can
be used later as an MsysAlloc() parameter.

Default display

The above defaults determine the display type that will be
allocated if the MappAllocDefault() DisplayIdVarPtr
parameter is not set to M_NULL. MappAllocDefault() macro
calls the MdispAlloc() command to allocate the display.
M_DEF_DISPLAY_NUM specifies display number on your target
system, and M_DEF_DISPLAY_FORMAT specifies the display
format. M_DEF_DISPLAY_INIT should be set to M_DEFAULT.

���
���&'(#7.6�5;56'/�52'%+(+%#6+10����������������������������������
�FGHKPG�/A&'(A5;56'/A6;2'���������������������/A5;56'/A27.5#4
�FGHKPG�/A&'(A5;56'/A07/����������������������/A&'8�
�FGHKPG�/A5;56'/A5'672������������������������/A&'(A5;56'/A6;2'

���
���&'(#7.6�&+52.#;�52'%+(+%#6+10���������������������������������
�FGHKPG�/A&'(A&+52.#;A07/���������������������/A&'(#7.6
�FGHKPG�/A&'(A&+52.#;A(14/#6������������������/+.A6':6
�/A&'(#7.6��
�FGHKPG�/A&'(A&+52.#;A+0+6��������������������/A&'(#7.6
�FGHKPG�/A&+52.#;A5'672�����������������������/A&'(A&+52.#;A(14/#6
�FGHKPG�/A&'(A&+52.#;A-';A%1.14����������������.
�FGHKPG�/A&'(A&+52.#;A-';A'0#$.'A10A#..1%������.
�FGHKPG�/A&'(A&+52.#;A-';A&+5#$.'A10A(4''������.

412 Appendix A: The default setup configuration file

Default digitizer

The above defaults determine the digitizer type that will be
allocated if the MappAllocDefault() DigitizerIdVarPtr
parameter is not set to M_NULL. MappAllocDefault() macro
calls the MdigAlloc() command to allocate the digitizer.
M_DEF_DIGITIZER_NUM specifies digitizer number on your
target system, and M_DEF_DIGITIZER_FORMAT specifies the
input data format (or camera output data format).
M_DEF_DIGITIZER_INIT should be set to M_DEFAULT.

Default image buffer

The above defaults determine the image buffer that will be
allocated if the MappAllocDefault() ImageIdVarPtr
parameter is not set to M_NULL. By default, if a color digitizer
was specified upon installation, a color buffer (three bands) will
be allocated; otherwise, a monochrome buffer is allocated. The
MappAllocDefault() macro calls the MbufAlloc2d()
command to allocate a monochrome buffer or
MbufAllocColor() to allocate a color buffer. The buffer width
and height are the maximum between the default display image
dimensions M_DEF_IMAGE_SIZE_X_MIN and
M_DEF_IMAGE_SIZE_Y_MIN and the default display format
size, but never exceed M_DEF_IMAGE_SIZE_X_MAX and
M_DEF_IMAGE_SIZE_Y_MAX. M_DEF_IMAGE_TYPE specifies
the depth and range of the data buffer.
M_DEF_IMAGE_ATTRIBUTE_MIN specifies the minimum
attributes for the buffer usage.
M_DEF_IMAGE_NUMBANDS_MIN specifies the number of color
bands of the buffer.

���
���&'(#7.6�&+)+6+<'4�52'%+(+%#6+10�������������������������������
�FGHKPG�/A&'(A&+)+6+<'4A07/� /A&'8�
�FGHKPG�/A&'(A&+)+6+<'4A(14/#6��>>27.5#4.+$>>&%(>>4���A.1�&%(�
�FGHKPG�/A&'(A&+)+6+<'4A+0+6� /A&'(#7.6
�FGHKPG�/A&'(A%#/'4#A5'672� /A&'(A&+)+6+<'4A(14/#6

��
���&'(#7.6�+/#)'�$7(('4�52'%+(+%#6+10�����������������������������
�FGHKPG�/A&'(A+/#)'A07/$#0&5A/+0���������������.
�FGHKPG�/A&'(A+/#)'A5+<'A:A/+0�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A;A/+0�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A:A/#:�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A;A/#:�����������������
�FGHKPG�/A&'(A+/#)'A6;2'��������������������
/A705+)0'&
�FGHKPG�/A&'(A+/#)'A#664+$76'A/+0����������/A+/#)'
/A241%

When you do not want to use defaults 413

When you do not want to use defaults
When you do not want to use MappAllocDefault(), you can
individually specify the allocation of any MIL application,
system, digitizer, buffer, or display. The individual allocations
must respect the following:

■ You must allocate the MIL application before using any other
MIL function.

■ You must allocate the MIL system after allocating the MIL
application and before allocating any digitizer, buffer, or
display. You can allocate multiple systems within an
application.

■ You can allocate multiple digitizers, buffers, or displays
within a system.

■ When freeing (de-allocating) individually, you must respect
the reverse of the order required for allocation.

The following illustrates allocating individually, using a
modification of the mgrab.c example (appearing in Chapter 2).

���(KNG�PCOG��OITCD�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�HTQO�VJG�FGHCWNV�ECOGTC�
���
�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
��/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT��������
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�������������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT������������
����������/KN%COGTC������������%COGTC�KFGPVKHKGT��������������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�������

����#NNQECVG�CP�CRRNKECVKQP����
��/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
����#NNQECVG�C�U[UVGO����
��/U[U#NNQE
/A5;56'/A/'6'14�++��/A&'8���/A%1/2.'6'��/KN5[UVGO��

EQPV����

414 Appendix A: The default setup configuration file

����#NNQECVG�C�FKIKVK\GT����
��/FKI#NNQE
/KN5[UVGO��/A&'8���/A%#/'4#A5'672��/A&'(#7.6���/KN%COGTC��

����#NNQECVG�C�FKURNC[����
��/FKUR#NNQE
/KN5[UVGO��/A&'8���/A&+52.#;A5'672��/A&'(#7.6�
��������������/KN&KURNC[��

����#NNQECVG�C�DWHHGT����
��/DWH#NNQE�F
/KN5[UVGO���������������/A+/#)'�
�/A241%�
�/A)4#$�
�/A&+52�
���������������/KN+OCIG��

����5GNGEV�C�FKURNC[����
��/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

����)TCD�CP�KOCIG�����
��/FKI)TCD
/KN%COGTC��/KN+OCIG��

����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
��RTKPVH
�#P�KOCIG�JCU�DGGP�ITCDDGF�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF����
��IGVEJCT
��

����4GNGCUG�VJG�DWHHGT����
��/DWH(TGG
/KN+OCIG��

����4GNGCUG�VJG�FKURNC[����
��/FKUR(TGG
/KN&KURNC[��

����4GNGCUG�VJG�FKIKVK\GT����
��/FKI(TGG
/KN%COGTC��

����4GNGCUG�VJG�U[UVGO����
��/U[U(TGG
/KN5[UVGO��

����4GNGCUG�VJG�CRRNKECVKQP���
��/CRR(TGG
/KN#RRNKECVKQP��
_

 Appendix B: The MIL Function
Developer’s Toolkit

This chapter covers the purpose and contents of the
toolkit that provides a privileged interface with MIL.

416 Appendix B: The MIL Function Developer’s Toolkit

The MIL Function Developer’s Toolkit
The MIL Function Developer’s Toolkit provides a privileged
interface with MIL that allows MIL programmers to define
commands to extend MIL’s functionality.

You can create your own MIL-type functions (pseudo-MIL
functions) and integrate them directly into the MIL library,
where they behave like standard MIL functions (for example,
respecting error handling and tracing). This is useful to create
high-level packages on top of MIL or to extend the MIL library
function set (for example, by adding new functions with
specialized algorithms). Although pseudo-MIL functions can
also integrate native mode functions, their inclusion makes the
pseudo-MIL function non-portable to other platforms. The
toolkit provides a series of functions (Mfunc...()) designed to
facilitate the creation of pseudo-MIL functions.

An example using the Function Developer’s
Toolkit
In this example, we create a pseudo-MIL function that adds a
constant to a LUT buffer and writes the result into the same
buffer.

��
��
���(KNG�PCOG��OPCVHEV�E�
���5[PQRUKU���6JKU�UJQYU�VJG�WUG�QH�VJG�/+.�PCVKXG�OQFG�RTQITCOOGT	U�MKV��
��������������6JKU�GZCORNG�UJQYU�JQY�VJG�WUGT�ECP�OKZ�/+.�EQFG�CPF
��������������WUGT�EQFG�VQ�ETGCVG�C�RUGWFQ�/+.�HWPEVKQP�
��������������6JKU�GZCORNG�ETGCVGU�C�HWPEVKQP�VJCV�#&&U�C�EQPUVCPV
��������������VQ�C�.76�DWHHGT�DGHQTG�VQ�WUG�VJCV�.76�QP�VJG�FKURNC[��
��������������0QVG��6JG�.WV�OWUV�JCXG�����GPVT[�CPF�DG���DKV�WPUKIPGF�
���
���JGCFGTU����
�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J
�FGHKPG�/#:A.76A5+<'�������
�FGHKPG�/#:A.76A&'26*����
�FGHKPG�&+/'05+10A'4414��

An example using the Function Developer’s Toolkit 417

���(WPEVKQP�FGHKPKVKQP����
XQKF�#FF%QPUV6Q.WV
/+.A+&�.WV+F��WPUKIPGF�EJCT�%QPUVCPV6Q#FF�
]
��/+.A+&��������(WPE�
��UJQTV���������P��6OR8CNWG�
��WPUKIPGF�EJCT�.WV%QPVGPV=/#:A.76A5+<'?�

�����2TGRCTG�VJG�UVCTV�QH�VJG�HWPEVKQP�CPF�TGIKUVGT�VJG�RCTCOGVGTU����
��(WPE���/HWPE#NNQE
�#FF%QPUV6Q.WV�����
��/HWPE2CTCO+F
(WPE���.WV+F�/A.76�/A+0
/A176��
��/HWPE2CTCO%JCT
(WPE���%QPUVCPV6Q#FF��

�����/CTM�VJG�UVCTV�QH�VJG�HWPEVKQP����
���KH�
/HWPE5VCTV
(WPE��
���]
��������&Q�VJG�QRGTCVKQP�WUKPI�C�EWUVQO�HWPEVKQP�CPF�EJGEM�VQ���
��������PQV�GZEGGF�VJG�UWRRQTVGF�NKOKVU�KH�TGSWKTGF�������������
������KH�
�
�/HWPE2CTCO%JGEM
(WPE���^^
����������

/DWH+PSWKTG
.WV+F�/A5+<'A:�/A07..������/#:A.76A5+<'����
����������
/DWH+PSWKTG
.WV+F�/A5+<'A$+6�/A07..�����/#:A.76A&'26*����
������]
�����������4GCF�VJG�.WV�EQPVGPV����
���������/DWH)GV
.WV+F�.WV%QPVGPV��

�����������#FF�VJG�EQPUVCPV����
���������HQT�
P������P���/#:A.76A5+<'��P

�
���������]
��������������%CNEWNCVG�VJG�XCNWG�VQ�YTKVG���
������������6OR8CNWG���
UJQTV�.WV%QPVGPV=P?�
�
UJQTV�%QPUVCPV6Q#FF�
��������������9TKVG�VJG�XCNWG�KH�PQ�QXGTHNQY�GNUG�UCVWTCVG���
������������KH�
6OR8CNWG�����ZHH�
���������������.WV%QPVGPV=P?���
WPUKIPGF�EJCT�6OR8CNWG�
������������GNUG�
���������������.WV%QPVGPV=P?����ZHH�
���������_

�����������9TKVG�VJG�TGUWNV�KP�VJG�.WV����
���������/DWH2WV
.WV+F�.WV%QPVGPV��
������_
������GNUG�
������]
�����������4GRQTV�C�/+.�GTTQT����
���������/HWPE'TTQT4GRQTV
(WPE�/A(70%A'4414
&+/'05+10A'4414�
��������������������������.WV�FKOGPUKQPU�PQV�UWRRQTVGF��
��������������������������5K\G�KU�PQV�����GPVTKGU�QT��
��������������������������&GRVJ�KU�PQV���DKV���
�������������������������/A07..���
�����_
��_
�����/CTM�VJG�GPF�QH�VJG�HWPEVKQP����
��/HWPE(TGG#PF'PF
(WPE��
_
��
EQPV����

418 Appendix B: The MIL Function Developer’s Toolkit

���/CKP�VQ�VGUV�VJG�HWPEVKQP����
XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP��������#RRNKECVKQP�+FGPVKHKGT�����
���������/KN5[UVGO�������������5[UVGO�+FGPVKHKGT����������
���������/KN&KURNC[������������&KURNC[�+FGPVKHKGT���������
���������/KN+OCIG��������������+OCIG�DWHHGT�+FGPVKHKGT����
���������/KN.WV����������������.WV�DWHHGT�+FGPVKHKGT������

�����#NNQECVG�FGHCWNV�CRRNKECVKQP��U[UVGO��FKURNC[�CPF�KOCIG����
��/CRR#NNQE&GHCWNV
/A%1/2.'6'���/KN#RRNKECVKQP���/KN5[UVGO�
��������������������/KN&KURNC[��/A07..���/KN+OCIG��

�����.QCF�C�TGHGTGPEG�KOCIG���
��/DWH.QCF
�$QCTF�OKO���/KN+OCIG��

�����2CWUG���
��RTKPVH
�%WUVQO�RUGWFQ�/+.�HWPEVKQP�ETGCVKQP�CPF�WUCIG��>P>P���
��RTKPVH
�4GHGTGPEG�KOCIG�YCU�NQCFGF��RTGUU�C�MG[�VQ�EQPVKPWG�>P���
��IGVEJCT
��

�����#NNQECVG�C�.76�DWHHGT���
��/DWH#NNQE�F
/A&'(#7.6��/#:A.76A5+<'��/#:A.76A&'26*��/A.76���/KN.WV��

�����5GV�VJG�.76�VQ�C�TCOR�
VTCPURCTGPV�����
��/IGP.WV4COR
/KN.WV��������/#:A.76A5+<'����/#:A.76A5+<'����
�����%CNN�VJG�2UGWFQ�/+.�HWPEVKQP�VQ�CFF�CP�QHHUGV�
�Z����VQ�VJG�.76����
��#FF%QPUV6Q.WV
/KN.WV���Z����

�����5MKR�VCTIGV�U[UVGO�PQV�UWRRQTVKPI�FKURNC[�NWV���
��KH�
/U[U+PSWKTG
/KN5[UVGO��/A5;5A6;2'��/A07..�����/A5;56'/A27.5#4A6;2'�
��]
����RTKPVH
�&KURNC[�.76�PQV�UWRRQTVGF�QP�2WNUCT��+OCIG�PQV�OQFKHKGF�>P���
��_
��GNUG
��]
�������7UG�VJG�PGY�.76�HQT�VJG�FKURNC[����
����/FKUR.WV
/KN&KURNC[��/KN.WV��
�������2CWUG���
����RTKPVH
�6JG�YJKVG�NGXGN�QH�VJG�KOCIG�YCU�CWIOGPVGF�WUKPI�UQOG>P����
����RTKPVH
�TGIWNCT�/+.�HWPEVKQPU�CPF�C�EWUVQO�RUGWFQ�/+.�HWPEVKQP�>P���
��_

��RTKPVH
�2TGUU�C�MG[�VQ�VGTOKPCVG�>P���
��IGVEJCT
��

�����(TGG�VJG�.76�DWHHGT���
���/DWH(TGG
/KN.WV��

�����(TGG�FGHCWNVU���
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

MIL Function Developer’s Toolkit Command Reference 419

MIL Function Developer’s Toolkit
Command Reference
The MIL Function Developer’s Toolkit provides functions that
allow you to create pseudo-MIL functions. The following table
provides an overview of these functions.

MIL developer
functions

Command parameters Description

MfuncAlloc() FunctionName, ParameterNumber Allocate a pseudo-MIL
function.

MfuncAllocId() FunctionId, ObjectType, UserPtr Allocate a pseudo-MIL object
(a user-created object
associated with a MIL
identifier).

MfuncErrorReport() FunctionId, ErrorCode,
ErrorMessage, ErrorSubMessage1,
ErrorSubMessage2,
ErrorSubMessage3

Report an error message.

MfuncFreeAndEnd() FunctionId Free and end a pseudo-MIL
function.

MfuncFreeId() FunctionId, ObjectId Free the MIL identifier
associated with a pseudo-MIL
object.

MfuncGetError() FunctionId, ErrorType, ErrorVarPtr Get error code or message.

MfuncIdGetObjectType() FunctionId, ObjectId Get the object type of a
pseudo-MIL object.

MfuncIdGetUserPtr() FunctionId, ObjectId Get the user pointer
associated with a pseudo-MIL
object.

MfuncIdSetObjectType() FunctionId, ObjectId, ObjectType Assign a new object type to a
pseudo-MIL object.

MfuncIdSetUserPtr() FunctionId, ObjectId, UserPtr Assign a new user pointer to a
pseudo-MIL object.

MfuncModified() BufId Signal the modification of a
MIL buffer.

MfuncParamCheck() FunctionId Read the MIL application
parameter checking flag.

MfuncParamDouble() FunctionId, ParamIndex,
ParamValue

Register a double parameter.

MfuncParamId() FunctionId, ParamIndex,
ParamValue, ParamIs,
ParamHasAttr

Register a MIL_ID parameter.

420 Appendix B: The MIL Function Developer’s Toolkit

MfuncParamLong() FunctionId, ParamIndex,
ParamValue

Register a long parameter.

MfuncParamPointer() FunctionId, ParamIndex,
ParamValue

Register a pointer parameter.

MfuncParamRegister() FunctionId Read MIL application
parameter registering flag.

MfuncParamString() FunctionId, ParamIndex,
ParamValue

Register a null terminated
string parameter.

MfuncStart() FunctionId Signal the start of a
pseudo-MIL function.

MIL developer
functions

Command parameters Description

MfuncAlloc 421

MfuncAlloc

 Synopsis Allocate a Pseudo-MIL function.

Format MIL_ID MfuncAlloc(FunctionName, ParameterNumber,
 WorkFunctionPtr, WorkDllName,

WorkFunctionName, WorkFunctionOpcode,
InitFlag, FuncIdVarPtr)

Description This function allows you to associate the current user-created function (that
is, the function calling MfuncAlloc()) with a MIL identifier and allocate it
as a pseudo-MIL function. This function will then be considered as a
standard MIL function, respecting all of MIL environment controls, such as
tracing and error handling.

You must establish the existence of the pseudo-MIL function (with a call to
MfuncAlloc()), before calling any other function. You must also register
each parameter of this pseudo-MIL function by calling the appropriate
MfuncParam...() function. Once this has been done, you must signal the
actual start of the pseudo-MIL function by calling MfuncStart().

Upon completion, you must signal the end of the pseudo-MIL function by
calling MfuncFreeAndEnd().

The FunctionName parameter is a null terminated string specifying the
name of the current user-created function.

The ParameterNumber parameter is the number of parameters passed
to the current user-created function.

MIL_TEXT_PTR FunctionName; Function name
long ParameterNumber; Number of parameters passed

MFUNCFCTPTR WorkFunctionPtr; Pointer to the work function to
call

MIL_TEXT_PTR WorkDllName; Name of the module containing
the work function

MIL_TEXT_PTR WorkFunctionName; Name of the work function to call
in the module

long WorkFunctionOpcode; Unique work function opcode

long InitFlag; Initialization flag
MIL_ID *FuncIdVarPtr; Pointer to a variable for the MIL

identifier

422 MfuncAlloc

The WorkFunctionPtr, WorkDllName, WorkFunctionName,
WorkFunctionOpcode, FuncIdVarPtr parameters are reserved for
future use, and should therefore be set to M_NULL.

The InitFlag parameter is reserved for future use, and should therefore be
set to M_DEFAULT.

Return value The returned value is a MIL identifier for the function; M_NULL on error.

Example mnatfct.c

See also MfuncStart(), MfuncFreeAndEnd(), MfuncParamDouble(),
MfuncParamId(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamString()

MfuncAllocId 423

MfuncAllocId

Synopsis Allocate a MIL identifier for a user-created object.

Format MIL_ID MfuncAllocId(FunctionId, ObjectType, UserPtr)

Description This function allows you to allocate a MIL identifier and associate it with a
user-created object (such as a structure, or an array). The object is then
known as a pseudo-MIL object. This permits a user-created object to be
recognized by MIL and treated as a standard MIL object, for such procedures
as tracing or error handling.

The FunctionId parameter is the identifier of the pseudo-MIL function
currently in use.

The ObjectType parameter identifies the type of MIL object being
allocated. This type is a bit encoded value and must be composed of
M_USER_OBJECT_1 or M_USER_OBJECT_2 with one of the 16 least
significant bits set (for example, M_USER_OBJECT_1 + 0x1L). You should
use different group types (M_USER_OBJECT_ 1 or M_USER_OBJECT_2) for
objects that are to be used in different MIL modules.

The UserPtr parameter specifies the address of the user-created object that
is to be associated with a MIL identifier. This object can be a structure, an
array, or any other data type.

Return value The returned value is the allocated MIL identifier; M_NULL on error.

See also MfuncFreeId(), MfuncParamId(), MfuncIdGetObjectType(),
MfuncIdSetObjectType(), MfuncIdGetUserPtr(), MfuncIdSetUserPtr()

MilId FunctionId; Function identifier

long ObjectType; Object type
void *UserPtr; Pointer to the user-created object

424 MfuncErrorReport

MfuncErrorReport

Synopsis Report an error message.

Format long MfuncErrorReport(FunctionId, ErrorCode, ErrorMessage,
ErrorSubMessage1, ErrorSubMessage2,
ErrorSubMessage3)

Description This function allows you to log an error message using the MIL error
handling mechanism. When this function is called, MIL will treat your error
as a normal MIL error. If error reporting is enabled, the error message will
be printed and all the information will be logged by the MIL error handler.
These errors can be read using the standard MIL error functions
(MappGetError()).

If you report an error with an error code set to M_NULL, you will reset any
pending internal error that a MIL function call, inside your pseudo-MIL
function, might have generated. This is useful if you don’t wish the MIL
error message to be reported. If you don’t clear these errors, or you don’t
report your own error, MIL will detect any pending error when executing
MfuncFreeAndEnd() and report the error message, prefixed with the
name of your pseudo-MIL function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ErrorCode parameter is the numeric code assigned to the pseudo-MIL
function’s group of error messages. It must be M_FUNC_ERROR or greater
(M_FUNC_ERROR+offset), so that it does not conflict with MIL specific
errors.

MIL_ID FunctionId; Function identifier
long ErrorCode; Error code to log

MIL_TEXT_PTR ErrorMessage; Error message to log
MIL_TEXT_PTR ErrorSubMessage1; Sub-error message 1 to log

MIL_TEXT_PTR ErrorSubMessage2; Sub-error message 2 to log
MIL_TEXT_PTR ErrorSubMessage3; Sub-error message 3 to log

MfuncErrorReport 425

The ErrorMessage parameter and its sub-messages are null terminated
strings specifying the text of your error message. If you do not want to use
one of the sub-messages, M_NULL can be passed. The error message, or any
sub-error message, must not be longer than M_ERROR_MESSAGE_SIZE
characters (including the terminating null character).

Return value The returned value is M_NULL if an error occurred during the error log
operation; otherwise, not null.

426 MfuncFreeAndEnd

MfuncFreeAndEnd

Synopsis Free and end a Pseudo-MIL function.

Format void MfuncFreeAndEnd(FunctionId)

Description This function signals the end of a pseudo-MIL function, and frees the
identifier associated with it. It assumes that a corresponding call to
MfuncStart() was previously made.

You must call this function to exit the pseudo-MIL function. When
MfuncFreeAndEnd() is called, MIL will treat your function end as a
standard MIL function end. Any pending error within the function will be
reported and, if trace reporting is enabled, the trace message will be printed.
You can control the trace behavior using the normal MIL trace control
function (MappControl()).

The FunctionId parameter is the MIL identifier of the function to
terminate.

See also MfuncAlloc(), MfuncStart()

MIL_ID FunctionId; Function identifier

MfuncFreeId 427

MfuncFreeId

Synopsis Free the MIL identifier associated with a pseudo-MIL object.

Format void MfuncFreeId(FunctionId, ObjectId)

Description This function frees a MIL object identifier that was allocated with the
MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object to
free.

See also MfuncAllocId()

MIL_ID FunctionId; Function identifier

MIL_ID ObjectId; Object identifier

428 MfuncGetError

MfuncGetError

Synopsis Get error code or message.

Format long MfuncGetError(FunctionId, ErrorType, ErrorVarPtr)

Description This function allows you to read an error code or message that was
previously reported. This function can be used to check the success of a MIL
function call inside a pseudo-MIL function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ErrorType parameter identifies the type of error you want to read. It
must be set to one of the following:

MIL_ID FunctionId; Function identifier

long ErrorType; Error type
void *ErrorVarPtr; Pointer to a variable for the error

M_INTERNAL Error code returned by the last call to any MIL function. This
code is reset to M_NULL_ERROR before each MIL function call
and is set to a specific error code if an error occurs while
executing the function. The error code is written in the
location pointed to by ErrorVarPtr (when not M_NULL) as a
long value and is also returned by
MfuncGetError().

M_INTERNAL_SUB_NB Returns the number of error subcodes associated to the
internal error. The number is written in the location pointed
to by ErrorVarPtr (when not M_NULL) as a long value and is
also returned by MfuncGetError().

M_INTERNAL_SUB_1, ...
M_INTERNAL_SUB_3

The nth error subcode associated to the current error. The
error subcode is written in the location pointed to by
ErrorVarPtr (when not M_NULL) as a long value and is also
returned by MfuncGetError().

M_INTERNAL_FCT The function code associated to the current error. The
function code is written in the location pointed to by
ErrorVarPtr (when ErrorVarPtr is not M_NULL) as a long
value and is also returned by MfuncGetError().

M_INTERNAL_...+
M_MESSAGE

When M_MESSAGE is added to an M_INTERNAL... define, the
function will return the string associated with specified error
type. The string will be written in a character array pointed
to by
ErrorVarPtr. This array must be at least
M_ERROR_MESSAGE_SIZE characters in size.

MfuncGetError 429

The ErrorVarPtr parameter is the address of the variable containing the
error code or message.

To get the M_GLOBAL or M_CURRENT error, use the regular
MappGetError() function.

Return value The returned value is an error code or sub-error code; otherwise, M_NULL.

430 MfuncIdGetObjectType

MfuncIdGetObjectType

Synopsis Get the object type of a pseudo-MIL object.

Format long MfuncIdGetObjectType(FunctionId, ObjectId)

Description This function retrieves the object type of an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

Return value The returned value is the object type of the specified object. When the
MIL_ID is not valid, M_NULL is returned if the Id value is less than the
greater valid Id; M_INVALID if the Id value is greater than the greater valid
Id.

See also MfuncAllocId(), MfuncIdSetObjectType()

MIL_ID FunctionId; Function identifier

MIL_ID ObjectId; Object identifier

MfuncIdGetUserPtr 431

MfuncIdGetUserPtr

Synopsis Get the user pointer of a pseudo-MIL object.

Format void* MfuncIdGetUserPtr(FunctionId, ObjectId)

Description This function obtains the user pointer of an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

Return value The returned value is the user pointer of the specified object.

See also MfuncAllocId(), MfuncIdSetUserPtr()

MIL_ID FunctionId; Function identifier

MIL_ID ObjectId; Object identifier

432 MfuncIdSetObjectType

MfuncIdSetObjectType

Synopsis Assign a new object type to a pseudo-MIL object.

Format void MfuncIdSetObjectType(FunctionId, ObjectId, ObjectType)

Description This function assigns a new object type to an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

The ObjectType parameter is the new object type to be assigned to the
specified object. This type is a bit encoded value and must be composed of
M_USER_OBJECT_1 or M_USER_OBJECT_2 with one of the 16 least
significant bits set (for example, M_USER_OBJECT_1 + 0x1L).

See also MfuncAllocId(), MfuncIdGetObjectType()

MIL_ID FunctionId; Function identifier

MIL_ID ObjectId; Object identifier
long ObjectType; New object type

MfuncIdSetUserPtr 433

MfuncIdSetUserPtr

Synopsis Assign a new pointer to a pseudo-MIL object.

Format void MfuncIdSetUserPtr(FunctionId, ObjectId, UserPtr)

Description This function assigns a new user pointer to an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

The UserPtr parameter is the new user pointer to assign to the specified
object.

See also MfuncAllocId(), MfuncIdGetUserPtr()

MIL_ID FunctionId; Function identifier

MIL_ID ObjectId; Object identifier
Void *UserPtr; New user pointer

434 MfuncModified

MfuncModified

Synopsis Signal the modification of a MIL buffer.

Format long MfuncModified(BufId)

 Description This function must be used to signal to MIL that the identified buffer has
been modified (altered). MIL will then increment the modification count of
that MIL buffer. This count is used by some MIL functions to manage
automatic updates. The current value of the count is accessible via
MbufInquire().

The BufId parameter is the MIL identifier of the buffer that has been
modified.

Return value The returned value is M_NULL if successful; otherwise, an error was found.

MIL_ID BufId; Buffer identifier

MfuncParamCheck 435

MfuncParamCheck

Synopsis Read the MIL application parameter checking flag.

Format long MfuncParamCheck(FunctionId)

Description This function allows you to read the MIL application parameter checking
flag, which has been set with the MappControl() function. The
MfuncParamCheck() function can be used to determine if the parameters
of the specified pseudo-MIL function must be checked. This is typically used
when you want to save the parameter checking time for a time-critical
pseudo-MIL function.

The FunctionId parameter is the identifier of the pseudo-MIL function in
use.

Return value The returned value is M_NULL if no parameter checking is required;
otherwise, checking is required.

See also MappControl()

MIL_ID FunctionId; Function identifier

436 MfuncParamDouble

MfuncParamDouble

 Synopsis Register a double parameter.

Format void MfuncParamDouble(FunctionId, ParamIndex, ParamValue)

 Description This function allows you to register a double parameter of the current
pseudo-MIL function. The MfuncParamDouble() function should be
called after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the double parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamCheck(),
MfuncParamId(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamString()

MIL_ID FunctionId; Function identifier

long ParamIndex; Parameter index
double ParamValue; Parameter value

MfuncParamId 437

MfuncParamId

Synopsis Register a MIL_ID parameter.

Format void MfuncParamId(FunctionId, ParamIndex, ParamValue,
 ParamIs, ParamHasAttr)

Description This function allows you to register a MIL_ID parameter of the specified
pseudo-MIL function. The MfuncParamId() function should be called after
a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the pseudo-MIL function
that received the parameter.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the MIL_ID parameter.

The ParamIs parameter specifies the type of MIL object. It must be one, or
more, of the following types to be considered valid:

MIL_ID FunctionId; Function identifier

long ParamIndex; Parameter index
MIL_ID ParamValue; Parameter value

long ParamIs; Type of MIL object represented
long ParamHasAttr; Attribute the MIL object must have

M_IMAGE M_LUT M_STRUCT_ELEMENT

M_KERNEL M_HIST_LIST M_PROJ_LIST

M_EVENT_LIST M_COUNT_LIST M_EXTREME_LIST

M_DISPLAY M_DIGITIZER M_ARRAY

M_APPLICATION M_SYSTEM M_GRAPHIC_CONTEXT

M_BLOB_RESULT M_BLOB_FEATURE_LIST M_PAT_MODEL

M_PAT_RESULT M_OCR_FONT M_OCR_RESULT

M_MEAS_MARKER M_MEAS_RESULT M_MEAS_CONTEXT

M_USER_OBJECT_1 M_USER_OBJECT_2

438 MfuncParamId

The ParamHasAttr parameter specifies what kind of attribute the MIL
object must have, in order to be considered a valid MIL_ID parameter for the
specified function. Either M_IN or M_OUT (or both) must be specified, to
indicate if the buffer is used for input or output. Optionally, you can specify
one or more additional attributes from the following list: M_GRAPH, M_DISP,
M_GRAB.

Note that the arguments tagged as M_OUT will have their internal
modification count incremented to signal that they have been modified.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamDouble(),
MfuncParamLong(), MfuncParamPointer(), MfuncParamString()

MfuncParamLong 439

MfuncParamLong

Synopsis Register a long parameter.

Format void MfuncParamLong(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a long parameter of the current
pseudo-MIL function. The MfuncParamLong() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the long parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamDouble(),
MfuncParamId(), MfuncParamPointer(), MfuncParamString()

MIL_ID FunctionId; Function identifier

long ParamIndex; Parameter index
long ParamValue; Parameter value

440 MfuncParamPointer

MfuncParamPointer

Synopsis Register a pointer parameter.

Format void MfuncParamPointer(FunctionId, ParamIndex, *ParamValue,
Size, ParamAttribute)

Description This function allows you to register a pointer parameter of the current
pseudo-MIL function. The MfuncParamPointer() function should be
called after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
pseudo-MIL function’s parameter list. The index of the first parameter is
considered to be one.

The ParamValue parameter is the value of the pointer parameter.

The Size parameter is the size of the data, in bytes, pointed to by the
ParamValue parameter.

The ParamAttribute parameter is the attribute of the pointer parameter.
It can be equal to M_IN or M_OUT.

See also MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamString()

MIL_ID FunctionId; Function identifier

long ParamIndex; Parameter index
void *ParamValue; Parameter value

long Size; Size of data pointed to by the ParamValue
parameter

long ParamAttribute; Parameter Attribute

MfuncParamRegister 441

MfuncParamRegister

Synopsis Read the MIL application parameter registering flag.

Format long MfuncParamRegister(FunctionId)

Description This function allows you to read the MIL application parameter registering
flag. This function can be used to know if the parameters of the specified
pseudo-MIL function must be registered. This is typically used when you
want to save the parameter registration time for some time-critical
pseudo-MIL functions.

The FunctionId parameter is the identifier of the pseudo-MIL function in
use.

Return value The returned value is M_NULL if no parameter registering is required;
otherwise, registering is required.

MIL_ID FunctionId; Function identifier

442 MfuncParamString

MfuncParamString

Synopsis Register a null terminated string parameter.

Format void MfuncParamString(FunctionId, ParamIndex,
*ParamValue,SizeOfData, ParamAttribute)

Description This function allows you to register a null terminated string parameter of
the current pseudo-MIL function. The MfuncParamString() function
should be called after a call to MfuncAlloc() and before a call to
MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
pseudo-MIL function’s parameter list. The index of the first parameter is
considered to be one.

The ParamValue parameter is the value of the string parameter.

The Size parameter is the size of the data, in bytes, pointed to by the
ParamValue parameter.

The ParamAttribute parameter is the attribute of the string parameter.
It can be equal to M_IN or M_OUT.

See also MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer()

MIL_ID FunctionId; Function identifier

long ParamIndex; Parameter index
MIL_TEXT_PTR ParamValue; Parameter value

long Size; Size of data being pointed to by the
ParamValue parameter

long ParamAttribute; Parameter attribute

MfuncStart 443

MfuncStart

Synopsis Signal the start of a pseudo-MIL function.

Format long MfuncStart(FunctionId)

Description This function signals to MIL the actual start of the specified pseudo-MIL
function. When this function is called, MIL will treat your function start as
a standard MIL function start. If trace reporting is enabled, the trace
message will be printed. You can control the trace behavior using the normal
MIL trace function (MappControl()).

Note that if a MIL identifier was registered in the function parameter list
with MfuncParamId(), the validity of that identifier will be checked
during MfuncStart() execution, and a MIL error will be reported if that
identifier is not valid.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function to start.

Return value The returned value is M_NULL if an error occurred; otherwise, not null.

See also MfuncAlloc(), MfuncFreeAndEnd(), MfuncParamId(), MappControl()

MIL_ID FunctionId; Function identifier

Index

A
AC Huffman table 144
acquisition

attribute 39, 224, 228, 232, 263, 267
continuous 33, 333
image 32, 108, 332
input LUT 133
precondition 119

address
Host 55
logical 55

allocate
application 21, 199
buffers 29, 185
child buffer 42, 240, 242, 244–245
data buffer 36
defaults 22, 184, 201
digitizer 32, 108, 185, 319
display 74, 185, 346
graphics context 102, 375
image buffer 27, 39
LUT buffer 69–70
multi-band buffer 132, 232
one-dimensional buffer 224
pseudo-MIL function 421
pseudo-mil identifier 423
system 183, 395
thread 206
two-dimensional buffer 228

allocation error 41
analog reference levels 344
annotation

display 86
image 102

application
allocate 199
building 21
control environment 204
control module 187
free 209
inquire environment 220

pseudo-MIL, parameter checking flag 435
pseudo-MIL, parameter registering flag 441
simultaneous processing 152
starting 183

application context 154
arcs, draw 104, 377
arcs, draw filled 378
attributes, data buffer usage 224, 228, 232,
263, 267

auxiliary display 76
Matrox Millennium G400, G450, G550 78
video output format 77

auxiliary screen 76
avi files 273, 277, 297

B
background color

associate to graphics context 103, 379
inquire 389

Bayer cameras
formats 62
grabbing with 59–60
using 59–60

Bayer images
converting to color images 59–60, 62
white balancing 64

Binary buffers 49
binary buffers, packed 38
blanking, display 81, 355
brightness, adjust on input 117
buffer

accessing a 54
RGB 47
storage format 46–49, 51–52
user-allocated 55

buffers
address 55
binary 49
displayable 39
grab 39
pitch of 55
YUV 49

C
camera

acquisition from 32, 108
adjusting/focusing 33
sophisticated 108
specification 109, 319

characters, text 106, 193, 394
child buffers 42

allocate 42, 240, 242, 244–245
ancestor buffer 301
attributes 240, 242, 244–245
data buffer attributes 42
definition 36
dimensions 42
display 43, 85
display multiple 82
inheriting parent features 42
LUT 69
multiple dimensions 240, 242, 245
offset 240, 242, 244–245
offset from parent 42
parent buffer 301
physical space 240, 242, 244–245
purpose 185
returned coordinates 42, 240, 242, 244–
245

size 42
type 240, 242, 244–245

circles, draw 104, 377
clear

buffer 247, 380
display 81, 355
graphics image buffer 103

clipping
borders 43
data 254
graphics 105

color
handling techniques 131
input LUT 133

color band 37, 232, 263, 267
color images

allocate buffer 132, 232
allocate child buffer 240, 242
copy 255, 257
copy single band 43
create buffer 267

dealing with 132
displaying 134, 368–369
grabbing 132, 332–333
loading 135, 306, 318
put data in band 44
reference levels 119
saving 135, 306, 318

command reference
order 196
quick reference 187
status section 196

commands
Function DevelopersToolkit’ 419
functions 22
MIL, command summary 187
predefined constants 196
pseudo-MIL 164, 416

communication channels 21, 24, 183
compensation

memory 205
processing 205

compiling 23
compressing images 140
conditional buffer, creating 102
continuous grab 33, 333
contrast 118

image, adjusting 117
control

application environment settings 204
areas processed 42
buffer features 248
digitizer 322
display 350
graphic context 382
messages, error 204, 206
parameter checking 205
processing compensation 205
system processing 397
thread 206
timer 223
trace mechanism 204

conversion
data format 45, 274, 293

coordinates
child buffer 42
of a pixel 58
text writing 106

copy
bit truncation/extension 44
clip, and 43, 254
color band 43, 70, 255, 257
conditional 43, 260
data 43, 253, 255, 257, 260, 280–281,
283, 287, 307–308, 310, 314–315

data line 312
data to LUT 70
mask 43, 262
specific buffer areas 43

Corona-II
exposure 125, 128–130

automatic model 127
bypass model 129

triggers 125, 128–130
CPU

CPU-assisted display 87
custom

window, VGA 90

D
data allocation and access module 35, 188
data buffer

allocation 224, 228, 232, 263, 267
ancestor 301
attributes 38, 41, 224, 228, 232, 263, 267
automatically allocated 45
child 36, 42
clear 103, 247, 380
clip border 43, 254
color band 37, 132, 232, 263, 267
control 248
copy 253
copy color 255, 257
copy theoretical line 287
defined 36, 185
depth 38, 224, 228, 232, 263, 267
dimensions 37
display 73
export data 45, 274
free 37, 279
get data, put in array 44
handling 35
import 45
import data 293
incorrect usage 41

inquire 272, 300
integer 38
intended usage 39
load 274
location 38
LUT, see LUT buffer 69
management 44
multiple dimensions 232, 267
multiple, display 43
multiple, handling 43
packed binary 38
parent 301
pseudo-MIL, modification 434
put data 44, 307–308, 310, 314–315
range 38, 224, 228, 232, 263, 267
restore 45, 316
retrieve data 280–281, 283, 289–290
save 45, 274, 318
sign 224, 228, 232, 263, 267
two-dimensional 263
type 38, 232, 263, 267
write data 312

data format, input device 109, 319
data generation

LUT 69, 373
module 192

data objects, manipulation concepts 184
data type 29
data, overwriting 29
DC Huffman table 144
dcf files 109
debugging 186
decompressing images 140
default graphics context 102
defaults

application 201
display 411
free 210
image buffer 18, 22, 29, 31, 412
initialization flag 410
initializing 18
input device 108, 412
input LUT 119
setup 410
system 411

depth
data buffer 38

destination buffer 29

device
control module 107

digitizer
allocate 32, 108, 319
color data format 132
configuration format 109
control 322
data format 319
event hook 336
free 108, 331
input channel 110, 321
inquire 109, 339
LUT 72, 119, 133, 343
number 319
reference levels 117, 344

digitizer configuration files 109
display

allocation 21, 346
annotation 86

Windows GDI 86, 88
border handling 74
buffer 29, 43
clear 81
color 96
color image 134
control behavior 350
control module 73, 191
CPU-assisted 87, 100
device number 79
example 91
format 346
free 91, 356
image buffer 368–369
image location 74
inquire 359
keying 87
LUT 71, 96, 134, 363
memory 74
monochromatic effect 71
monochrome buffer 28
multiple buffers 82
non 8-bit buffers 80
number 346
pan 85, 367
pseudo-color effect 71
pseudo-color LUT 97
scroll 85, 367
size and depth 79

true color effect 72
user-defined window 90
zoom 85, 370

display type 75
auxiliary 76

Matrox Millennium G400, G450,
G550 78

video output format 77
windowed 75

extended desktop 75
Displayable buffers 39
dots, draw 104, 384
double buffering, definition 121
DrawDIBDraw()

VGA 347–348
drawing 102, 104
dynamic range 118

E
edge

rising/falling 326–327
error reporting

appendix 185
automatic 31
code 211
hook 217, 357
memory, insufficient 41
message control 22, 204, 206
messages 186, 211
pseudo-MIL function 424, 428
screen 185
suberror code 211
thread 154–155
use 185

examples
color, run with 133
display in user-defined window 91
display multiple buffers 82
Function DeveloppersToolkit’ 416
general information 18, 24
grab 32
image allocation/display 30
installing 18
MIL sample program 24
mmultdis.c 82
modify for color 28
mstart.c 24

mwindisp.c 91
Native Mode ProgrammersToolkit’ 165
pseudo-function development 416
standard defaults 28

export data buffer 45, 274
exposure 130

automatic model
Corona-II 127

bypass model
Corona-II 129

Corona-II 125

F
field

grabbing 111
field grabbing 326
file format 45, 274
files

avi 273, 277, 297
filled-in shapes 105, 378

boundary-type seed fill 385
font

associate to graphics context 106, 386
inquire 389
predefined 106
scale 106, 387
size 106, 387

foreground color
associate to graphics context 103, 381
fill with 105
inquire 389

frame
grabbing 33, 111

frame buffer 74
free

application 209
application defaults 210
buffer, data 37, 279
defaults 184, 210
digitizer 331
display 356
graphics context 102, 192, 388
pseudo-MIL function 426
pseudo-MIL identifier 427
system 402

function
development 165, 416
execution success 22
hook 186, 217, 336, 357
pseudo-MIL, allocate 421
pseudo-MIL, example 416
pseudo-MIL, free 426
pseudo-MIL, start 443
user-created 15

Function Developers Toolkit 415
Function DevelopersToolkit

command summary 419
example 416

functions
commands 22

functions See also, commands 196

G
gamma correction 72
Genesis

system 396
global library state 410
Grab 39
grab 119

color images 132
continuous 33, 100, 333
data buffer 39, 132
example 32
frames 33, 111
halt 33, 335
image 32, 108, 332
mode 121
monochrome 32
multi-dimensional buffers 132
scale 323
synchronization 121
wait 334

Grab buffers 39
GrabAndWarp()

example 165
grabbing

single frame 111
graphics 102

arcs, draw 104, 377
boundary type seed fill 105, 385
buffer, clear 103, 380
capabilities 14

circles, draw 104, 377
clipping 105
dots, draw 104, 384
filled elliptic arcs, draw 104, 378
filled rectangles, draw 104, 193, 393
filled-in shapes 104
lines, draw 104, 193, 391
module 101
outline, draw 104
parameters 103
rectangles, draw 104, 392
text, write 106, 193, 394

graphics context
allocate 102, 375
background color, associate 103, 379
control 382
default 102, 376
definition 102
font scale, associate 106, 387
foreground color, associate 103, 381
free 102, 192, 388
inquire 389
object parameters 103
text font, associate 106, 386

graphics controller
memory 74

H
halt grabbing 33, 335
header file 23
hook

digitizer event 336
error 217, 357
get information 214
to an event 217
trace 217, 357
user-defined function 186

Host
communication 183
screen 185

host
communication 21
CPU 14
default system 37, 199, 202, 224, 228,
232, 295, 375, 395

screen 22
system 22, 70, 373, 395

hue 243, 255, 258, 282, 284, 309, 311
HLS 240

Huffman encoding 143–144

I
identifier, MIL objects 196
Image

placement 85
image

grabbing 32
image buffer

acquisition 39
allocation 27, 29–30, 38–39
clear 247, 380
color 28, 33
conditional 102
default 22, 29, 133
defined 29
destination 29
display 30, 39
display border 74
display multiple 82
display position 74
free 37
map through LUT 68
removing from display 81, 355
select for display 74, 368
select window for display 369
size 29
source 29
two-dimensional 28–29, 33
uses 29

import data 293
include file 23
initialization

default 184, 201
input device 108
system 18, 108, 183

input device
brightness 117
contrast 117
control module 190
defaults 108
frequency 109
line-scan 111
LUT 119
reference level 341

resolution 109
subsampling 120
using 32

input signal 324
inquire

application environment 220
data buffer 272, 300
digitizer 109, 339
display 359
graphics context 389
system 291, 403

installation
MIL 18
test program 23

integer buffers 38
Intellicam 109
intensity

correction 70
interlaced JPEG compression 140

J
JPEG

discrete cosine transform 145
JPEG compression 140

K
kernels

buffer allocation 39
keying 87

inquire 359

L
lines

draw 104, 193, 391
line-scan device 111
link program with library 23
load

color image 135
data 44–45, 306
LUT data 70

look-up table
1-band custom 97
3-band custom 98
changing default 97

control loading into physical output LUTs
94

pseudo-color 97
lossless compression, JPEG 140
lossy compression, JPEG 140
luminance

HLS 240, 243, 255, 258, 282, 284, 309,
311

LUT
1-band custom 97
3-band custom 98
changing default 97
control loading into physical output LUTs
94

pseudo-color 97
LUT buffer

allocation 38, 69
child buffer 69
color bands 69, 133
data generation 69–70
dimensions 69
load 70
management 69
one-dimensional 69
restore 70

LUTs
custom 97
data generation 371, 373
definition 68
display 71, 134, 363
display color, change 96
general information 67
index 69
input 117, 119, 133, 343
input mapping 72
intensity correction 70
monochromatic effect 71
multiple-color-band 99
one-color-band 98
pseudo-color effect 71
ramp 69
true-color effect 72
usage 71

M
M_DISP 39
M_GRAB 39
macros 197
Mapp...() 187, 199
MappAlloc() 22, 102, 154, 183, 199

example 91
MappAllocDefault() 18, 21, 29, 31–32, 74,
102, 108, 132–134, 184, 201, 410

example 24, 30, 32–33, 82, 165, 416
MappControl() 22, 185–186, 204
MappControlThread() 155, 206
MappFree() 22, 183, 209

example 91
MappFreeDefault() 21, 184, 210

example 24, 30, 32–33, 82, 165, 416
MappGetError() 22, 155, 186, 211

example 30
MappGetHookInfo() 214
MappHookFunction() 22, 186, 217
MappInquire() 220
MappModfiy() 222
MappTimer() 223
mask, copy 43, 262
Mbuf...() 188
MbufAlloc() 54
MbufAlloc1d() 36, 69, 97, 185, 224

example 416
MbufAlloc2d() 29, 36, 82, 185, 228

example 30, 91
MbufAllocColor() 22, 36, 46, 69, 132, 185, 232
MbufBayer() 59–60, 62, 64, 237
MbufChild1d() 42, 244
MbufChild2d() 42, 82, 245

example 82
MbufChildColor() 42, 240
MbufChildColor2d 242
MbufClear() 103, 247

example 82, 91
MbufControl 88
MbufControl() 88, 97–98, 141, 148, 248

example 165
MbufCopy() 70, 141, 253
MbufCopyClip() 43, 254
MbufCopyColor() 43, 70, 255
MbufCopyColor2d() 257
MbufCopyCond() 43, 260

MbufCopyMask() 43, 262
MbufCreate2d() 55, 263
MbufCreateColor() 55, 267
MbufDiskInquire() 272
MbufExport() 45, 135, 141, 274
MbufExportSequence 142
MbufExportSequence() 277
MbufFree() 22, 37, 42, 69, 279

example 82, 416
MbufGet() 44, 54, 280

example 416
MbufGet1d() 44, 289
MbufGet2d() 290
MbufGetColor() 44, 281
MbufGetColor2d() 283
MbufGetHookInfo() 285
MbufGetLine() 287
MbufHookFunction 291
MbufHookFunction() 291
MbufImport() 45, 135, 141, 293
MbufImportSequence() 142, 297
MbufInquire() 55–56, 88, 300

example 165, 416
MbufLoad() 45, 70, 135, 306

example 82, 416
MbufPut() 44, 54, 70, 97, 307

example 416
MbufPut1d() 44, 70, 314
MbufPut2d() 315
MbufPutColor() 44, 70, 308
MbufPutColor2d() 310
MbufPutLine() 312
MbufRestore() 45, 70, 135, 316
MbufSave() 45, 135, 318
Mdig...() 190
MdigAlloc() 22, 32, 108–110, 132, 319

example 91
MdigChannel() 110, 321
MdigControl() 33, 121, 153, 322
MdigFree() 22, 108, 132, 185, 331

example 91
MdigGrab() 33, 121, 132, 141, 332

example 32
MdigGrabContinuous() 33, 132, 333

example 33, 91
MdigGrabWait() 121, 334
MdigHalt() 33, 121, 335

example 33, 91

MdigHookFunction() 153, 336
MdigInquire() 109, 339

example 165
MdigLut() 72, 119, 133, 343
MdigReference() 119, 133, 344
Mdisp...() 191
MdispAlloc() 22, 29, 74–75, 87, 134, 346

device number 79
example 91
M_AUXILIARY 77
M_WINDOWED 75

MdispControl() 80, 88, 350
MdispDeselect() 29–30, 81, 134, 355

example 82, 91
MdispFree() 22, 81, 185, 356

example 91
MdispHookFunction() 89, 357
MdispInquire() 88, 99, 359
MdispLut() 71, 97–98, 134, 363
MdispOverlayKey() 87, 365
MdispPan() 85, 367
MdispSelect() 29, 39, 43, 74, 82, 134, 368

example 82
VGA 90

MdispSelectWindow() 90, 369
example 91
VGA 90

MdispZoom() 85, 370
example 82

memory
compensation 205
insufficient 41
resources 21–22

messages, error 22, 31
Meteor

system 395
MfuncAlloc() 421, 436–437, 439–440

example 416
MfuncAllocId() 423, 430, 432–433
MfuncErrorReport() 424

example 416
MfuncFreeAndEnd() 424, 426

example 416
MfuncFreeId() 427
MfuncGetError() 428
MfuncIdGetObjectType() 430
MfuncIdGetUserPtr() 431
MfuncIdSetObjectType() 432

MfuncIdSetUserPtr() 433
MfuncModified() 434
MfuncParamChar()

example 416
MfuncParamCheck() 435

example 416
MfuncParamDouble() 436
MfuncParamId() 437, 443

example 416
MfuncParamLong() 439
MfuncParamPointer() 440
MfuncParamRegister() 441
MfuncParamString() 442
MfuncStart() 421, 426, 436–437, 439–440,
442–443

example 416
Mgen...() 192
MgenLutFunction() 69–70, 371
MgenLutRamp() 69, 97, 373

example 416
Mgra...() 192
MgraAlloc() 102, 375
MgraArc() 104, 377
MgraArcFill() 104, 378
mgrab.c 413
MgraBackColor() 103, 379
MgraClear() 103, 380
MgraColor() 103, 381
MgraControl() 382
MgraDot() 104, 384
MgraFill() 104–105, 385
MgraFont() 106, 386
MgraFontScale() 106, 387
MgraFree() 102, 388
MgraInquire() 389
MgraLine() 104, 391
MgraRect() 104, 392
MgraRectFill() 104, 393
MgraText() 106, 394

example 24, 91
MIL

file format 45, 274
header file 23
include file 23
objects 15, 196, 222
running application 23, 183
structure 182

MIL modules
application 187
data allocation and access 188
data generation 192
digitizer control 190
display allocation 191
display control 73, 191
graphics 101, 192
I/O device control 107
system device 193

mil.h 23, 184, 197
mil.ini

Meteor-II 115
milsetup.h 18, 21–22, 28, 108, 133, 184,
201, 210, 410

MimBinarize()
example 82

MimHistogramEqualize() 70
MimLutMap()

example 416
mmultdis.c 82
MMX Technology, Intel 16
mnatfct.c 416
mnatgen.c 165
monochromatic effect 71
monochrome image buffer 29
mstart.c 23
Msys...() 193
MsysAlloc() 22, 183, 395

example 91
MsysControl() 397

example 165
MsysFree() 22, 183, 402

example 91
MsysInquire() 403

example 91, 165
multi-dimensional buffers 132
multiple buffers

displaying 82
multi-processing 151–152

definition 152
multi-threading 151, 153

definition 153
mwindisp.c 91

N
native mode 163, 415

example code 165
flag 410
integrating with MIL 164
interface 164
portability 416

non 8-bit buffers
displaying 80

O
object identifier 196
object type

pseudo-MIL function 430
pseudo-MIL, assign 432

open communication 21, 24, 183
overlay

buffer 86
behavior 87

flickering 100
simulated 100

overwriting data 29

P
packed binary buffers 38
palette

image 69
panning, display 85, 367
parameter

double, pseudo-MIL 436
long, pseudo-MIL 439
MIL_ID, pseudo-MIL 437
null-terminated string, pseudo-MIL 442
pointer, pseudo-MIL 440

parameter checking control 205
parent buffer 36, 42, 185

display 82, 85
physical memory 29

buffer allocation 38
pitch 55
pixel

coordinates 58
depth 15
value, mininum/maximum 117

pointer
pseudo-MIL object 431
pseudo-MIL object, assign 433

portability
native mode 164

portability, native mode 416
predictive coding 143
preprocess

input data 119
processing

attribute 224, 228, 232, 263, 267
compensation 397
control 205
limiting 42
system, force 397

program examples 18
pseudo-color

effect 71
pseudo-MIL commands 416
pseudo-MIL functions 416, 421
put data

1D data buffer 314
2D data buffer 315
array, from 44
data buffer 307–308, 310

Q
quantization

JPEG 145

R
ramp, LUT 69
read.me 18, 20, 23–24
rectangles, draw 104, 392
rectangles, draw filled 193, 393
reference level

analog 117
black/white 117, 341, 344
controls 117, 344
digitizer 341
input channel 117, 341

reporting errors 185
resident software, required 410
restart markers 145

restore
data buffer 316
LUT buffer 70

retrieve data
1D data buffer 289
2D data buffer 290
color bands 281, 283
data buffer 280–281, 283

RGB
buffers 47

S
sample program 23
saturation

HLS 240, 243, 255, 258, 282, 284, 309,
311

save
color image 135
data 44–45, 274, 318

scale, input 119, 323
scaling 119
scrolling, display 85, 367
seed fill, boundary-type 385
select

digitizer input channel 321
image to display 368

setup flag 410
size

child buffers 42
data buffer 37
image buffer 29
LUT buffer 69
text character 106

software triggers
Corona-II 130

source buffer 29
speed

multi-threading 153
stop grabbing 33, 335
storage area 29
strobe device 109
structure, MIL 182
structuring elements

buffer allocation 39
subsampling input 119

synchronization
of grab 121, 325
thread 153–154
with grab end 325

system
allocation 21, 395
buffers 29
configuration 18
control behavior 397
default 15, 18
default setup configuration 410
definition 14
device 71, 132, 134, 183–184
display criteria 29
free 402
Genesis 396
grab criteria 33
Host 395
initialization 18, 108
inquire 291, 389, 403
Meteor 395
module 193
multiple 22
multi-processing capabilities 152
number 395
type 395
VGA 395

T
target system

system 15
test installation program 24
text

character font 106, 386
character size 387
graphics 106
support 102
write 193, 394

theoretical data line 287, 312
thread

allocate or control 206
application context 154
data sharing 153
error reporting 154–155
multi-threading 151, 156
synchronization 154

TIFF file format 274

timer control 223
toolkit

Function Developers’ 163, 415
Native Mode Programmers’ 415

trace
application 186
hook 217, 357
mechanism control 204

transforming data 45, 274, 293
trigger device 109
triggers 128, 130

Corona-II 125, 129
true color effect 72

U
user-allocated buffer 55

V
VCF (Video Configuration Format) 346
VGA

system 395

W
wait, grab 334
White balance

and Bayer images 64
determining coefficients

monochrome 65
RGB 65
YUV 65

Window occlusion
Meteor-II 117

windowed display 75
extended desktop 75

Windows
custom window, VGA 90

Windows desktop screen(s) 75
Windows GDI annotations 86, 88
Windows NT

display
size and depth 78

extended desktop restriction 75

X
xfontscale, inquire 389

Y
yfontscale, inquire 389
YUV buffers 49

Z
zoom

display 85, 370

Product Support

Product Assistance Request Form

Name:
Company:
Address:
Phone: Fax:
E-mail:

Hardware Specific Information
Computer: CPU:
System memory: PCI Chipset:
System BIOS rev:
Video card used: Resolution:
Network Card: Network Software:
Other cards in system:

Software Specific Information
Operating system: Rev:
Matrox SW used: Rev:
Compiler: Rev:

Describe the problem:

	MIL-Lite User Guide & Command Reference
	Contents
	Chapter 1: Getting started
	The MIL-Lite package
	MIL and the Intel MMX/SSE technologies
	System requirements
	Getting started
	Installation
	Building an application

	Chapter 2: Allocating an image buffer and grabbing images
	Getting started
	Allocating and displaying an image buffer
	Grabbing images

	Chapter 3: Specifying and managing your data buffers
	Data buffers
	Target system
	Specifying the dimensions of a data buffer
	Data type and depth
	Attribute
	Manipulating and controlling certain data buffer areas
	Child buffers
	Copying specific buffer areas

	Managing data buffers
	Controlling how color image buffers are stored
	RGB buffers
	Binary buffers
	YUV buffers
	YUV16 Packed
	YUV9 Planar
	YUV12 Planar
	YUV16 Planar
	YUV24 Planar
	Child YUV buffers

	Accessing a MIL buffer directly
	Mapping a data buffer to user-allocated memory
	Pixel conventions
	Using buffers with the Bayer color filter
	Using MIL to convert the image
	How the Bayer image gets converted
	White balancing your Bayer images

	Chapter 4: Lookup tables
	Lookup tables
	LUTs and data buffers
	Loading and generating data into LUTs
	Generating data directly into the LUT buffer
	Loading LUTs with precalculated data

	Using LUTs
	Displaying using LUTs
	LUTs and digitizers

	Chapter 5: Displaying an image
	Displaying an image
	Types of displays
	Windowed display
	Auxiliary display
	Display number
	Display size and depth
	Displaying buffers of different data depths

	Removing a buffer from the display
	Displaying multiple buffers
	Panning, scrolling, and zooming
	Annotating the displayed image non-destructively
	Using GDI annotations

	Displaying an image in a user-defined window
	Using MdispSelectWindow()

	Palettes and output LUTs for windowed display (256-color)
	Reference material: Windows palettes and physical output LUTs
	Default palette settings
	Changing the default LUT values

	CPU-assisted display

	Chapter 6: Generating graphics
	MIL and graphics
	Preparing for graphics
	Drawing graphics
	Writing text

	Chapter 7: Grabbing with your digitizer
	Cameras and input devices
	The data format
	The digitizer number
	Multiple cameras
	Grabbing a single field
	Line-scan cameras
	Grabbing to the display
	Live and pseudo-live continuous grabs
	Live transfer to the display
	Pseudo-live transfers to the display

	Screen Tearing
	Reference levels, lookup tables, and scaling
	Black and white reference levels
	Color image reference levels
	Mapping grabbed data through a LUT
	Scaling

	Optimizing application performance when grabbing
	Grab mode
	Double buffering
	Multiple buffering
	Grabbing a sequence of frames in real-time

	Grabbing with triggers and exposures
	Asynchronous reset mode
	Triggers and exposures
	Software triggers

	Chapter 8: Color
	Dealing with color
	Grabbing
	Displaying
	Saving and loading color images
	How to manage your color buffer

	Chapter 9: JPEG compression
	Introduction
	General steps
	Controlling a JPEG compression
	JPEG lossless
	JPEG lossy
	Restart markers

	Improving results
	Working with tables
	Inquiring values in default tables
	Using your own table

	Chapter 10: Data manipulation with multiple systems
	Data manipulation with multiple systems

	Chapter 11: Using MIL with multi-processing and under multi-thread systems
	Multi-processing
	Multi-threading
	MIL and multi-threading

	Chapter 12: Using MIL with Native Mode Functions
	Integrating native functions with MIL code
	Portability
	Signaling MIL about Native Mode use

	A native mode example

	Chapter 13: Distribution
	Distribution of MIL-Lite-based applications
	Redistributing MIL-Lite run-time DLL files and device drivers with your application
	Redistributing directly from the MIL-Lite CD
	Redistributing using your own setup program

	Normal redistribution using your custom CD
	Silent redistribution
	Response file parameters
	Debugging the response file
	Important notes for Windows 98/Me users
	Important notes for Windows NT/2000 users

	Uninstallation
	MIL and MIL-Lite licenses

	Chapter 14 : Programming with MIL
	A MIL overview
	Starting your MIL application
	Header file and libraries
	MIL object manipulation concepts
	Error handling and reporting
	Tracing an application

	A quick command reference
	The application allocation and control module
	The buffer allocation and access module
	The digitizer allocation and control module
	The display allocation and control module
	The basic data generation module
	The basic graphics module
	The system allocation and inquiry module

	Chapter 15: The command reference descriptions
	The reference description notes
	MappAlloc
	MappAllocDefault
	MappControl
	MappControlThread
	MappFree
	MappFreeDefault
	MappGetError
	MappGetHookInfo
	MappHookFunction
	MappInquire
	MappModify
	MappTimer
	MbufAlloc1d
	MbufAlloc2d
	MbufAllocColor
	MbufBayer
	MbufChildColor
	MbufChildColor2d
	MbufChild1d
	MbufChild2d
	MbufClear
	MbufControl
	MbufCopy
	MbufCopyClip
	MbufCopyColor
	MbufCopyColor2d
	MbufCopyCond
	MbufCopyMask
	MbufCreate2d
	MbufCreateColor
	MbufDiskInquire
	MbufExport
	MbufExportSequence
	MbufFree
	MbufGet
	MbufGetColor
	MbufGetColor2d
	MbufGetHookInfo
	MbufGetLine
	MbufGet1d
	MbufGet2d
	MbufHookFunction
	MbufImport
	MbufImportSequence
	MbufInquire
	MbufLoad
	MbufPut
	MbufPutColor
	MbufPutColor2d
	MbufPutLine
	MbufPut1d
	MbufPut2d
	MbufRestore
	MbufSave
	MdigAlloc
	MdigChannel
	MdigControl
	MdigFree
	MdigGrab
	MdigGrabContinuous
	MdigGrabWait
	MdigHalt
	MdigHookFunction
	MdigInquire
	MdigLut
	MdigReference
	MdispAlloc
	MdispControl
	MdispDeselect
	MdispFree
	MdispHookFunction
	MdispInquire
	MdispLut
	MdispOverlayKey
	MdispPan
	MdispSelect
	MdispSelectWindow
	MdispZoom
	MgenLutFunction
	MgenLutRamp
	MgraAlloc
	MgraArc
	MgraArcFill
	MgraBackColor
	MgraClear
	MgraColor
	MgraControl
	MgraDot
	MgraFill
	MgraFont
	MgraFontScale
	MgraFree
	MgraInquire
	MgraLine
	MgraRect
	MgraRectFill
	MgraText
	MsysAlloc
	MsysControl
	MsysFree
	MsysInquire

	Appendix A: The default setup configuration file
	The default setup configuration file
	When you do not want to use defaults

	Appendix B: The MIL Function Developer's Toolkit
	The MIL Function Developer's Toolkit
	An example using the Function Developer's Toolkit
	MIL Function Developer's Toolkit Command Reference
	MfuncAlloc
	MfuncAllocId
	MfuncErrorReport
	MfuncFreeAndEnd
	MfuncFreeId
	MfuncGetError
	MfuncIdGetObjectType
	MfuncIdGetUserPtr
	MfuncIdSetObjectType
	MfuncIdSetUserPtr
	MfuncModified
	MfuncParamCheck
	MfuncParamDouble
	MfuncParamId
	MfuncParamLong
	MfuncParamPointer
	MfuncParamRegister
	MfuncParamString
	MfuncStart

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Product Support

